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“Life itself is a creator of patterns.” (Piaget, 1950, p. 167) 

1.0 Introduction 
Many argue that patterns are the cornerstone of mathematics. They are the foundation that the 
whole of the subject is built on. From the earliest tally systems to the development of differential 
calculus to modern mathematics patterns were and are the genesis, the motivation, and the 
foundation of mathematical knowledge. As such mathematics is often referred to as the science 
of patterns (Borwein & Jörgenson, 2001; Resnick, 1997). Steen (1988) articulates this relationship 
between patterns and mathematics thus: 

Mathematical theories explain the relations among patterns; functions and 
maps, operators and morphisms bind on type of patterns to another to yield 
lasting mathematical structures. Applications of mathematics use these 
patterns to “explain” and predict natural phenomena that fit the patterns. 
Patterns suggest other patterns, often yielding patterns of patterns. (p. 612) 

Even the very description of what it means to do mathematics can be defined in the context of 
patterns - “mathematicians observe patterns; they conjecture, test, discuss, verbalize, and 
generalize these patterns” (National Council of Teachers of Mathematics - NCTM, 1994).  

However, the role of patterns in mathematics is an ironic one. While much of mathematics has 
its roots in patterns, there is no place for patterns in the formal representation of mathematics. 
The contemporary view is that mathematics is axiomatic in nature. As such, convention dictates 
that mathematics is presented in a linear and deductive argument, in the form of theorems and 
proofs. Patterns, on the other hand, are not axiomatic, nor are they necessarily linear. By nature, 
a pattern is inductive, and thus has no place in mathematical proof. "Much of what is “pattern” 
in the knowledge of mathematics is instead encoded in a linear textual format born out of the 
logical formalist practice that now dominates mathematics." (Borwein & Jörgenson, 2001, p.897). 

In the teaching and learning of mathematics this irony is extended. While a mathematical proof, 
with its unfaltering deductive logic, contains within its structure the truth about a mathematical 
concept, it is often inappropriate for conveying mathematical concepts in that it may, in fact, be 
conveying the wrong message to our students – that full rigor is the core of mathematical (Hanna, 
1989). Furthermore, it is often the use of a pattern that unlocks that truth and both presents it 
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to the student and convinces them of it (Harel & Sowder, 1998; Mason, 2002; Rowland, 2002; 
Tahta, 1980). Consider, for example, the properties of negative exponents. Although they can be 
shown to be true using deductive reasoning these concepts initially defy students’ intuition. It is 
the use of patterns, which most often facilitates the conceptual change necessary to create the 
understanding.  

24 = 16 
23 = 8     
22 = 4   While the exponent decreases by one as you move down 
21 = 2 the left column, the value of the exponential expression is  
20 = 1   divided by two as you move down the right column. 
2-1 = ½ 
2-2 = ¼ 

Unfortunately, the way in which patterns are used in the teaching of mathematical concepts can 
create a whole new set of misunderstandings – not of the mathematical content but of the 
patterns themselves. If through the pedagogical use of patterns in the teaching and learning of 
mathematics due care is not taken to preserve distinction between the types of patterns used 
then there is a risk that students’ understanding of patterns can become blurred. This article 
examines how the lack of explicit attention to the distinction between repeating patterns and 
number patterns leads to difficulties for students engaged in problem solving activities that 
involves the investigation of patterns and offers a pedagogical solution to the prevention of this 
blurring. 

2.0 In Pursuit of Pattern 
What is a pattern? This question, although simply stated, is not so simple to answer. To see this 
I must first ask the question – to what ends is it useful to ask what is a pattern? That is, what 
logical purpose would an answer to the question serve? A precise definition of what a pattern is 
would help facilitate the process of discernment; it would help us distinguish patterns from non-
patterns and thus form the basis of a classification scheme. “Definition can thus be seen as a way 
of adding precision to the boundaries of a concept, once formed; and of stating explicitly its 
relation to other concepts” (Skemp, 1971). The definition of prime number is what helps us 
discern primes from composites, the definition of multiples is what helps us discern multiples 
from non-multiples, etc.  

Skemp makes a further distinction between primary concepts and secondary concepts. A primary 
concept - such as the colour red – can be conveyed through the use of examples. Given a set of 
suitable examples the variability of the examples and the constancy of the concept within the 
examples will cause the invariant property to emerge and become associated with the concept. 
So for the example of the concept red, a set of objects all of which are red would be gathered 
together as exemplars of the colour.  



A secondary concept, alternatively, is one that can only be explained through the bringing 
together of words or symbols – that is, definitions. The concept of prime number is one such 
secondary concept. Skemp also acknowledges, however, that in defining and naming concepts 
the scope of their meaning can become limited. Take, for instance, his discussion of the concept 
of chair. We all have a well-developed ability to discern chairs from non-chairs. However, if we 
attempt to define what is a chair in some precise fashion (for example – a four legged seat with 
a backrest) we may exclude, by the use of this definition, things that are very clearly chairs (for 
example – a rocking chair). The same is true for the concept of pattern. A meaningful definition 
of what it means to be a pattern may exclude things that we would otherwise include in the set 
of patterns. To see this, consider what a constructed definition of pattern would have to 
encompass. It would have to capture all visual patterns – in one-dimension, two-dimensions, and 
three-dimensions – as well as auditory and movement patterns. It would also need to include any 
pattern that was a combination of these aforementioned patterns – like a dance or a movie clip. 
Now consider the types of words that would be used to create such a definition: sequenced, 
ordered, predictable, regular, etc. Each of these words either limit the scope of what things are 
patterns or provide nothing more capable of capturing the essence of pattern than the word 
pattern is. 

Where does that leave the question ‘what is a pattern?’ Based on the discussion above it would 
appear as though patterns are a primary concept and thus describable (not definable) by the set 
it belongs to. That is, a pattern is that which we perceive to belong to the set of patterns. 
However, there are sets of patterns that act as secondary concepts in that they are well-defined. 
Scales, for example, are a well-defined form of auditory pattern, tessellations are a well-defined 
form of two-dimensional patterns, and a line dance is a well-defined form of movement pattern. 
What follows is a discussion on two such patterns - repeating patterns and number patterns. 

2.1 Repeating pattern 
A repeating pattern is a pattern in which there is a discernable unit of repeat (Threlfall, 1999). 
That is to say, the pattern has a cyclic structure that can be generated by the repeated application 
of a smaller portion of the pattern. This would include patterns such as A, B, A, B, …, the days of 
the week, or a tessellation. For the purposes of this article the unit of repeat will be defined as 
the smallest subset of elements of the pattern that can generate the pattern through successive 
application. That is, although ABAB… or even ABABAB… can both generate the repeating pattern 
ABABAB… the unit of repeat will be considered to be AB.  

ABABAB…  has a unit of repeat of length 2 – AB 
ABcABc…  has a unit of repeat of length 3 – ABc 

The underlying principle of repeating patterns is their cyclic nature. Given a repeating pattern 
with a unit of repeat of length n the determination of the next element can be accomplished in 
two ways. 



• There is an equality between every element in the pattern and one of the first n 
elements.  

• There is an equality between every element in the pattern and the element n positions 
prior to it.  

The length of the unit of repeat creates an isomorphism between repeating patterns. Thus, 
ABAB… is isomorphic to clap, stomp, clap, stomp, .... This is often referred to as the transfer of a 
repeating pattern (Burton, 1982) and does not change the crucial property of the pattern. 

2.2 Number pattern 
It could be argued that a number pattern is any pattern constructed on number, but I propose 
that the definition of number pattern be limited to those patterns in which the numerical value 
of the elements is important. That is, the pattern cannot be transferred (as defined above) to a 
non-numeric pattern without loss of some crucial property of the pattern. For example, the 
pattern 1, 2, 3, 4, 3, 2, 1 is transferable to abcdcba and thus is not a number pattern but a pattern 
using numbers as individual elements. A pattern such as 1, 2, 1, 1, 2, 1, 1, 1, 2, … is also not a 
number pattern as it can be transferred to abaabaaab… without loss of the nature of the pattern. 
Furthermore, repeating patterns constructed from numbers are not considered number patterns 
as they can be transferred to a non-numeric representation. What remains are patterns such as:  

 1, 2, 3, 4, 5, … 
 3, 7, 11, 15, 19, … 
 1, 1, 2, 3, 5, 8, … 
 1, 4, 9, 16, 25, … 
 1, 3, 6, 10, 15, … 

In all of these cases the (numerical value of the) element is dependent on the numerical value of 
the previous element(s) or the numerical value of the position. That is, for each of these patterns 
the numerical values of its elements create the pattern and as such are a significant attribute 
would be lost through any form of transfer. 

3.0 The Teaching and Learning of Patterns 
The value of patterns to the teaching and learning of mathematics is well understood. “When we 
involve or appeal to pattern in teaching mathematics, it is usually because we are trying to help 
students to extract greater meaning, or enjoyment, or both, from the experience or learning 
environment with which they are occupied, and perhaps also to facilitate remembering.” (Orton, 
1999, vii). As a general skill it is thought that the ability to discern a pattern is a precursor to the 
ability to generalize and abstract (Burton 1982, Threlfall, 1999). Scandura (1971) classifies pattern 
recognition (the detection of regularity) as one of the six basic processing skills (the others are 
the abilities to: particularize, interpret, describe, make logical inferences, and axiomatize). 
Sinclaire (2001) claims that patterning is an aesthetic mode of cognition – “by which we 
constantly and successfully make sense of our environment” (p.26). In a more specific context 
the NCTM (1994) identifies competency with patterns as being necessary in the ability to  



• solve problems; 
• develop understandings of important concepts and relationships; 
• investigate the relationships among quantities (variables) in a pattern; 
• generalize patterns using words or variables; 
• extend and connect patterns; 
• construct understanding of function. 

The role of patterns as pedagogical tools cannot be overlooked. It has already been mentioned 
that it is often through the use of patterns that a teacher is able to unlock the truth within 
mathematical theorems and proofs. It is also through the use of patterns that students are able 
to explore new ideas. “The role of work with repeating patterns is as a useful basis for teaching 
about other matters, with the pattern-making acting as a concrete and familiar experience, which 
can be meaningfully referred to in talking about new ideas.” (Threlfall, 1999, p. 20). 

3.1 Teaching and learning of repeating patterns 
The formal treatment of patterns in primary years is focused initially on repeating patterns. A 
repeating pattern, as already mentioned, is a pattern that has a discernable unit of repeat. In 
many ways this is a formalization of the patterns that students have begun to experience in the 
cyclic nature of the days of the week, months of the year, and hours of the day (Charlesworth, 
2000).  

In these early school years children are exposed to a variety of repeating pattern tasks. They are: 
reproduce – copy, identify – express the unit of repeat, extend – continue, extrapolate – fill in 
gaps, transfer – change to a different modality, and create – make their own repeating pattern 
(Burton, 1982; Greeno and Simon, 1974; Threlfall, 1999). Reproduction of a pattern is the 
simplest of these activities and is achievable by most four year olds. The identification of the unit 
of repeat, as well as the extension, extrapolation, and transfer of a pattern is usually achieved by 
first grade, but this is largely dependent on the complexity of the repeating pattern (Burton 1982; 
Vitz and Todd, 1967).  

3.2 Teaching and learning number patterns 
Treatment of repeating patterns quickly moves to the introduction of number patterns. By third 
grade the majority of the patterns that students have experienced are built on number. The 
processes that are most often involved in the handling of number patterns can be summarized 
into four basic tasks: solve – provide a rule, expressed informally or formally, by which the 
elements of the pattern are produced, extend – continue the pattern, identify – determine the 
existence of a number pattern, and create – construct their own number pattern (Heargreaves, 
Threlfall, Frobisher, & Shorrocks-Taylor, 1999).   

Much of early number pattern work is done in the context of coming to know the base ten 
numeration system. This is seen in the exploration of even and odd numbers, the use of skip 
counting to learn multiplication facts, and the search for number patterns within the 
multiplication tables. In later years students are exposed to number patterns in the form of 



arithmetic and geometric sequences during which time they are taught explicit tools for the 
treatment of such number patterns. 

4.0 The Common Ground 
Although repeating patterns and number patterns as defined are disjoint, there are several 
venues within which they are treated indiscriminately. As a result the boundary that distinguishes 
them from one another becomes blurred. In what follows I present several such venues and 
discuss how they contribute this blurring. 

4.1 Task based blurring of distinction 
As demonstrated above, the tasks associated with repeating patterns are in many cases the same 
as those associated with number patterns. In both cases students work towards being able to 
identify, extend, and create the patterns. Within these three tasks are two very distinct ways of 
thinking. Watson (2000) distinguishes between patterning activities as either reading with the 
grain or across the grain. Reading with the grain means to read with the pattern – to determine 
the next term by previous terms. Reading across the grain involves looking across the direction 
of the pattern and determining the term based on the position the term is occupying.  

Reading with the grain is more commonly associated with the task of extending a pattern while 
reading across the grain is associated with generalizing a pattern. However, there is no exclusivity 
here. For example, the pattern 2, 5, 10, 17, … can either be extended by seeing it as an increasing 
arithmetic sequence of the differences (+3, +5, +7, …) which is reading with the grain or as 12 + 
1, 22 + 1, 32 + 1, 42 + 1, … which is reading across the grain.  

In the primary years both repeating patterns and number patterns are treated almost exclusively 
with reading with the grain tasks. As a result the transition from repeating patterns to number 
patterns is seamless and therefore there is an implication that there is no distinction between 
the two types of patterns. In later years the tasks tend towards reading across the grain in order 
to foster generalizing skills needed for algebra and functions (Clemson and Clemson, 1994 – cited 
in Threlfall, 1999). However, in these later across the grain type activities repeating patterns are 
not used. In the case where patterns are used then they are number patterns, in the form of 
sequences, and as such, do not provide an opportunity to be distinguished from repeating 
patterns.  

4.2 Pedagogical blurring of distinction 
Perhaps one of the first pedagogical uses of patterns is in the teaching of multiplication. One 
popular means by which basic multiplication facts are taught is through skip counting (Burton, 
1982). Skip counting is where the multiples of a number are emphasized by the clap of the hands 
as the students chant the natural numbers. For example, the multiples of three would be brought 
forth by 1, 2, 3-clap, 4, 5, 6-clap, ... The rhythmical nature of the clapping is a repeating pattern 
while the natural numbers themselves are not. 



4.3 Mathematical blurring of distinction 
The convolution of repeating patterns and number patterns begins even before skip counting, 
however, with the chanting and writing of the natural numbers. The base ten numeration system 
that we use is the most fundamental of number patterns, yet it has repeating elements to it. 
Consider the written sequence of counting numbers 1,2,3,4,5… The unit digit of these numbers 
forms a repeating pattern with a unit of repeat that is ten elements long. This is a visual pattern 
that is especially apparent when the numbers are seen on the hundred chart so commonly used 
in elementary schools. Also apparent in the hundreds chart is the preservation of the units digit 
within each column. This property is further accentuated through the use of this pattern in 
teaching the addition of tens property of unit preservation (Burton, 1982; Threlfall and Frobisher 
1999). The sequences of even (2,4,6,8,10) and odd numbers (1,3,5,7,9) also display a similar 
repeating pattern. This time, however, the repeating pattern formed by the unit digits is 5 
elements long.  

The repeating nature of the decimal system is less apparent in the chant of the numbers primarily 
because the unit of repeat is too long to maintain a rhythm and also because of the way in which 
the numbers from 11 to 19 have been named. Incremental counting by fives, however, creates a 
repeating pattern whose chant has an easily perceivable unit of repeat. For example, 5, 10, 15, 
20, 25, 30, 35, 40, … contains in its unit digit a pattern of 5,0,5,0,5,0, … and in its spoken form 
(once you get over 20) the rhythmical endings of  –ty,-five,-ty,-five,-ty, … A repeating pattern is 
even more apparent in the arithmetic sequence with a common difference of five but with a 
starting element not being a multiple of five: 23, 28, 33, 38, 43, 48, ... In this case the visual and 
the auditory are synonymous. That is the auditory endings of the numbers (-three, -eight, -three, 
-eight, …) are identical to the written unit digits 3, 8, 3, 8, 3, 8, ...  

What follows is an examination of how the blurring of the distinction between repeating patterns 
and number patterns leads to difficulties for students engaged in problem solving activities that 
involves the investigation of patterns. 

5.0 The Synthesis of Prior Studies 
Over the last two years I have been involved in a number of research studies on pre-service 
elementary school teachers understanding and use of arithmetic sequences and other patterns 
(Liljedahl, 2002, 2001; Liljedahl & Zazkis, 2001; Zazkis & Liljedahl, 2001, 2002a, 2002b). None of 
these previous endeavours, however, dealt with the lack of distinction between repeating 
patterns and number patterns. This article is an exploration of the common theme that emerged 
from these previous studies – that the lack of distinction between repeating patterns and number 
patterns in instructional activities creates an obstacle (cognitive obstacle if you will) for the 
student. As a result, the data comes from a number of different sources: informal surveys, clinical 
interviews, and various written assessments.  



5.1 The participants 
Participants for all the studies were preservice elementary school teachers who were, at the time 
of the respective studies, enrolled in a course "Foundations of Mathematics for Teachers", which 
is a core course in the elementary teacher education program. Within the course students are 
exposed to activities that involve repeating patterns and sequences (both arithmetic and 
geometric). In addition, they are exposed to a variety of other number patterns – such as 
sequence of squares, Fibonacii sequence, etc. – in the context of problem solving activities. 
However, no efforts were ever made to draw attention to the distinction between the different 
types of patterns. 

5.2 The tasks 
Create a Pattern 
This task was an informal survey administered in a class of 67 students at the end of the semester.  

(a) Create a pattern. 
(b) Create a pattern that is somehow fundamentally different from the first pattern you wrote down. 
(c) Create a number pattern. 

Train Problem 
This task was given on a number of occasions. It appeared on two course final exams and as part 
of an informal class survey at the beginning of the semester. The number of participants for each 
was 106, 98, and 76 respectively.  

(a) A toy train has 100 cars. The first car is red, the second is blue, the third is yellow, the fourth is red, the 
fifth is blue, the sixth is yellow, and so on. What is the colour of the 80th car? What is the number of 
the last blue car?  

(b) Imagine a toy train with 1000 cars, following the 7 colour repeating pattern:  
1 -  red, 2 - orange, 3 - yellow, 4 - green, 5 - blue, 6 - purple, and 7 - white. What is the colour of the 
800th car? What is the number of the last blue car?  

These questions can be answered through the use of either division with remainder or counting 
up/down from a multiple. 

Division with remainder 
This is a very powerful strategy in that it partitions the natural numbers into sets of like attributes. 
For the Train Problem that common attribute is the colour of the cars. For example, the red cars 
are all in positions whose remainder in division by three will be one, the blue cars have a 
remainder of two, and the yellow cars have no remainder. Therefore, the 80th car (80/3 = 26 
with a remainder of 2) will be blue. If the same strategy is applied to a number pattern like 1, 5, 
9, 13 the like attribute is the remainder itself. For example, every element of the number pattern 
1, 5, 9, 13 has a remainder of one when divided by four.  

Counting up/down from a multiple 
This strategy relies on the fact that every element of the pattern is some distance from a multiple 
of the length of the unit of repeat. For the Train Problem that means that every car that is in a 
position that is a multiple of three will be yellow, every car that is one beyond a multiple of three 



will be red, and two beyond will be blue. Thus, the 80th car which is two beyond 78 (78 = 26 x 3) 
will be blue. Similarly, for the number pattern 1, 5, 9, 13 every element is one more than a 
multiple of four.  

The Calendar Problem 
This problem was given in an audio taped clinical interview setting to 12 participants.  

I’ve chosen a calendar page, October 2000, and I’m going to place a red marker on the 1, a blue on the 2, a 
green on the 3, and a yellow on the 4. Now, I’m going to repeat this pattern; red on the 5, blue on the 6, 
green on the 7, and yellow on the 8. 

(a) What colour will number 13 be? 
(b) What colour will number 28 be? 
(c) If the calendar continued on forever, what colour would 61 be? 
(d) What colour would 178 be? 
(e) What colour would 799 be? 
(f) If there were five colours (red, blue, green, yellow, and black), what colour would 799 be? 
(g) If there were six colours, what colour would 799 be? 

The specific questions asked varied as the interviewer followed up on the participants' 
comments. Again, the use of either division with remainder or counting up/down from a multiple 
can answer these questions. 

The Sequence Problem 
This problem was given as part of two different audio taped clinical interviews – one with 20 
participants, the other with 12. 

Consider the sequence 1, 5, 9, … 
(a) What will the next few numbers in the sequence be? 
(b) Will the number 48 be in this sequence? 
(c) Will 63 be in the sequence? 
(d) Can you give me a big number that you know for sure will be in the sequence? 
(e) Consider the sequence 2, 5, 8, … Is 48 going to be in the sequence? 
(f) Can you give me a big number that you know for sure will be in the sequence? 
(g) Consider the sequence 8, 15, 22, … Can you give me a big number that you know for sure will be 

in the sequence? 
(h) Consider the sequence 15, 28, 41, … Is 1302 going to be in this sequence? 

The specific questions asked varied as the interviewer followed up on the participants' 
comments. Either division with remainder or counting up/down from a multiple can help to 
answer these questions. 

The Snake Problem 
This problem was given as a project to a group of 36 students to be completed in a journal 
displaying all their work.  

Consider the following pattern: 

1 2 3 4 
  8 7 6 5 



9 10 11 12   
  16 15 14 13 

If this pattern continues, where will the numbers 86, 151, 1151 be? 

This problem presents a pattern that has both a repeating pattern and a number pattern 
component to it. The numbers themselves forms a number pattern while the position of the 
numbers forms a repeating pattern. Thus, either division with remainder or counting up/down 
from a multiple will determine the position of any specified number. 

5.0 Data and Analysis 
What will be presented here are excerpts from the data as exemplars of some of the difficulties 
that students had in working with the aforementioned tasks. Because The Common Ground 
section dealt extensively with the inherent lack of distinction between repeating patterns and 
number patterns the data has been organized to reflect the emerging difficulties that such a lack 
of distinction produced. Each subsection will present a difficulty along with exemplars drawn 
from a variety of the tasks/studies as well as an analysis of the strategy used. Quantitative results 
will be given to emphasize the robust nature of some of these strategies. 

5.1 Last digit patterns 
This difficulty is centred both around students’ inappropriate attention to the pattern of last digit 
of the elements of a number pattern and their propensity towards it. Attention to the last digit 
is an explicit effort to find a repeating pattern in a number pattern. This is no different than the 
(repeating) pattern-spotting activities that children engage in the defining of odd and even 
numbers, incremental counting, and the multiplication tables (Threlfall & Frobisher, 1999) 

Attention to the last digit was used by six students (n = 32) while working on the Sequence 
Problem. In some cases it is helpful to the student, as can be seen by the Mike’s efforts.  

Interviewer:  The sequence is 1, 7, 13, 19, 25 and so on I’ll pick a number, a big number, let’s say 360, 
and my question is, if I continue this sequence, will the number 360 be one of the 
elements? 

[..]  
Mike:  Well no, it wouldn’t be because, (pause) well I was just looking at these numbers, 1, 7, 

[13] the final digit is 3 and the final digit is 9, 5 and, oh wait a minute, yeah, no that would 
be 31 and there’s the, and 31 and then 37, so the pattern, you’re seeing a period of the 
pattern there, 1, 7, 3, 9, 5, 1, 7, 3, uh 9 and uh 5 and so on, so 360 wouldn’t be in this 
sequence. 

In other cases, however, it doesn’t help. If the term that is being checked for isn’t so easily 
excluded then uncertainty prevails. This can be seen by the difficulty that Helen has. 

Helen: The pattern [of last digits] is 1, 5, 9, 3, 7 and then it start over again. So, no … 360 is not 
in the sequence. 

Interviewer:  Interesting. How about 63? Is 63 in the sequence [1, 5, 9, …]? 
Helen:  Um, (pause) I can’t say. It might be. My instinct is telling me that it is… 
Interviewer:  Um hm . . . 
Helen:  I can’t say for certain. 62 is not in the sequence …  



 

5.2 Unit-attribute link 
Unit-attribute link is the term I’ve given to strategies that involve the mapping of the unit 
preservation property of addition of ten from the natural number system to a problem where 
such a property does not apply. That is, adding ten (or some multiple of ten) to a natural number 
does not change the unit digit. Thus, the unit digit is an attribute that does not change if ten is 
added to the number. This leads to an overgeneralization that adding ten in a different 
circumstance will also result in the attended attribute remaining static.  

The use of unit-attribute link was prevalent in many of the tasks mentioned. It is most likely an 
artefact left over from students initial introductions to the natural numbers and the emphasis 
that was placed on the preservation of the unit digit when adding tens. This is typically 
exemplified by the columns in the hundreds chart used in the classroom in primary years.  

In the Snake Problem Melissa makes the assumption that the number 86 and 186 would be in 
the same column. In total seven participants (n = 36) in this study mentioned this assumption 
somewhere in their problem-solving journal. 

Since 86 in column D then 186 will also be in column D. So 187 is in column C or E depending on the direction 
that the pattern is running. 

Megan was one of five (n = 32) who made the same assumption in the Sequence Problem. 

Interviewer:  Ok. So 63 is not in the sequence [1, 5, 9, …]. Can you think of a big number, a three digit 
number, that you are sure is here or you are sure isn’t here?. 

Megan:  Okay.  61 would be the next number in this sequence and then um … 91 would be in the 
sequence. 

Interviewer:  Um hm. . . 
Megan:  Um, (pause) and 391 would be in the sequence. 

On the Calendar Problem, Greg is one of two (n = 12) who initially believes that because 13 is red 
then 23 will also be red.  

Interviewer:  Okay, so 13 is red. How about number 28? 
Greg:  Okay.  Um…23 will be red, 24 blue, green, yellow, red, blue. 28 will be blue. 
Interviewer:  Okay…let’s see if that is right. 
[…] 
Greg:  Um…no its, its yellow… 

In the Train Problem Jennifer is certain that adding ten to the number of a car does not change 
the colour of the car. She uses this strategy to answer each of the questions. 

 The last blue car is 98 because any number ending with the digit 8 will be blue. 
 The last blue car will be 995 because all numbers ending in the digit 5 will be blue. 

Over the three studies that this problem was used 9 of the students (n = 280) used this logic on 
at least one of the four questions.  



5.3 Tens patterns 
This is very similar in nature to the unit-attribute link in that it deals with multiples of ten. The 
difference, however, is that instead of assuming that the attribute remains constant the students 
focus on the pattern that is produced by examining the multiples of ten. In some cases this can 
be a viable, yet cumbersome, strategy. While attending to the pattern of last digits is a strategy 
that involves creating a repeating pattern within a number pattern, tens multiples is a strategy 
of looking for a number pattern within a repeating pattern.  

In the Train Problem Shirley was one of 23 (n = 280) who notice a pattern in the multiples of 10. 

The 80th car will be blue. This is because there are three different coloured cars and each multiple of 10 
will be the next colour. As the 10th car is red, the 20th is blue, 30th yellow, 40th red, 50th blue, 60th yellow, 
70th red, 80th blue. 

Cheryl was the only one (n = 12) who noticed a pattern of 10’s in the Calendar Problem. 

Interviewer: If the calendar continued on past 31 what colour would number 61 be? 
(pause) 
Cheryl: I’m just thinking…10 is blue, and 20 is yellow, 30 is blue again… 
Interviewer: Hmm… 
Cheryl: I think 60 will be yellow. 
Interviewer: What about 61? 
Cheryl: Oh, yes, blue … I mean red. 61 will be red. 

In the Snake Problem most of the students also noted a pattern of 10’s. While for some it served 
as a shortcut for counting up to a desired number for John it was a pattern with little usefulness. 

10 in column B, 20 and 30 in column D, 40 and 50 in column B, 60 and 70 in column D, etc., an interesting 
pattern that will not help. 

In all there were 24 students (n = 36) who commented on this pattern. This strategy also 
appeared once (n = 32) in the Sequence Problem as an exploration of whether or not a specific 
multiple of ten is in the sequence or not as can be seen by Bob’s efforts. 

Bob: 10 is in [ the sequence 2, 6, 10, …]  but 20 is not. 30 is in, 40 is not. 
Interviewer: Okay, so what about 360? 
Bob: Its in. 

5.4 Pattern of primes 
Although much can be said on this one issue alone I will focus on the repeating pattern nature of 
these exemplars. There were several cases where students looked for a pattern in the location 
of primes. Although no one makes an explicit statement as to the search for a repeating pattern 
it is implied by the purpose for searching in the first place. Like attention to the last digit, this 
strategy is a case of trying to spot a repeating pattern in a number pattern. 

Lisa was the only one (n = 12) who looked for the placement of primes on the Calendar Problem. 

Lisa: No it won’t. (pause) Or, oh, would it be green because its prime? 
Interviewer: Green is prime? 



Lisa: 3, 7, 11, … 
Interviewer: Okay, where is the next green one? 
Lisa: (pause) 16, no. (pause) 

There were five students (n = 36) who made mention of looking for a pattern of primes on the 
Snake Problem. Stephanie notices the placement of the primes. 

I looked at where the primes were and I noticed that they always land in column A, C, or E. Except 2. 2 lands 
in column B. I can’t see a pattern…this is so frustrating. 

All five of the students who explored the placement of primes abandoned this strategy quickly. 

5.5 Repeating pattern as pattern 
My feeling at seeing these difficulties emerging over and over again in the data from various 
studies was that students have a propensity towards repeating patterns. This would explain the 
robust tendency to look for repeating pattern and units of repeat in all patterns. To test this I 
constructed the Create a Pattern survey and used it in a class of 67 students during the last lesson 
of the course. This is the only instrument implemented specifically for this study.   

Of the 67 responses, 41 of them used a repeating pattern as an example of pattern (question 1). 
The second question was used to probe if they indeed understand that there are patterns that 
are not repeating patterns. By and large, they do. Of the 41 who responded to question 1 with a 
repeating pattern, 29 used a non-repeating pattern in response to question 2.  

On its own this survey would mean little. There are many shortcoming regarding the method of 
sampling and lack of ability to discern what the students took ‘fundamentally different’ to mean. 
However, in conjunction with the four previous sections it does confirm a propensity towards 
repeating patterns in the pattern work of the participants. 

5.6 Discussion of results 
The blurring between these two types of patterns begins, most likely, in the primary years with 
the seamless transition between repeating patterns and number patterns. The seamless-ness is 
facilitated on two fronts: the explicit search for repeating patterns in number patterns and the 
constancy of the with the grain tasks that both types of patterns are treated with. The search for 
repeating patterns in the natural numbers is an inherent and effectual method of coming to 
understand the base ten numeration system and cannot be avoided. The constancy of with the 
grain tasks used to explore the patterns also cannot be avoided as the primary age students are 
not developmentally ready to start working with across the grain tasks. The blurring of the 
boundaries between repeating patterns and number patterns is not improved in later years 
primarily because the focus of patterns moves from content to pedagogy. That is, patterns cease 
to be the content matter and instead become the pedagogical tools by which new content matter 
is taught. The focus is less on relationship of the pattern to other patterns and more on the 
relationship of the pattern to the new content at hand.  



6.0 Pedagogical Implications 
The diagnosis is clear, but the treatment is not trivial. The main obstacle in treating the blurring 
of distinction between patterns is that the conventional use of patterns in the teaching and 
learning of mathematics are very powerful and effective pedagogical strategies. To eliminate, or 
even limit, the implementation of any of these teaching strategies would be detrimental to the 
learning of the mathematical concepts they support. As such, any treatment of the problem 
needs to be from a constructive and integrated perspective. That is, solutions need to be found 
that build on, and work with the existing use of patterns in the teaching of mathematics. In what 
follows I propose one solution for the remediation and mediation of the tension between the 
inherent benefits of using patterns as a pedagogical tool and the inherent problems of using 
patterns as a pedagogical tool. 

6.1 Definitions 
In the early part of this article I laid out a clear set of definitions for repeating patterns and 
number patterns (a repeating pattern is a pattern in which there is a discernable unit of repeat, 
and a number pattern is a pattern with numbers as elements that cannot be transferred to a non-
numeric pattern without loss of some crucial property of the pattern). Although the definition of 
repeating pattern is a conventional one my definition of number pattern is not. I felt that in order 
for the distinction between the two patterns to become clear their definitions needed to create 
distinct sets. That is, I wanted to create a definition of number pattern in such a way that no 
pattern could be both a repeating pattern and a number pattern. Such distinction through 
definition would give us – mathematicians and teachers – a language with which to discuss and 
teach the concept of patterns. The definition I created accomplishes this. However, I have not 
created anything new – the patterns existed before the definition and they remain after the 
definition. What I have done is to make explicit the distinction between the two types of patterns. 
I offer up one such set of definitions. I make no claim that others do not exist, or that others are 
not better, but only that they are necessary. 

6.2 Language 
Once the definitions that provide distinction are in place the terms themselves need to be 
incorporated into the language of mathematics and mathematics instruction. "The need to make 
drastic changes to the prior thinking may not even occur to the students unless the needed 
change is made very explicit in the teaching.” (Pehkonen and Merenluoto, 2001, p.264). That is, 
the terms repeating pattern and number pattern need to be used to accentuate the patterns 
being encountered – whether those encounters are in the investigation of the patterns 
themselves or in the use of the patterns in the investigation of mathematical content. The 
repeated usage of the language of patterns will help to facilitate students’ conception of 
patterns.  

In simple terms, the solution to the problem is to create and use a language of distinction – a 
classification scheme. However, merely stating that this is the solution is an innocuous treatment 
of the situation. The much greater task is to implement these changes. 



6.3 Teacher education/re-education 
The misconception of what is a pattern and the blurring of distinction discussed in this article 
have all been done so in the context of preservice elementary school teachers’ responses. The 
misconceptions and lack of understanding that I have shown exists among these participants will 
follow them out into their teaching careers. This indicates that the bigger problem lies not with 
the students, but with the teachers themselves. In order to make changes for students there first 
needs to be a process of change for teachers. 

What would this change look like? I propose that the issue at hand is an issue of conceptual 
change. That is, they need to be re-educated – not just educated. For many teachers, the 
conceptual understanding of patterns that they have is not strained by the curriculum they teach. 
This is because the lack of distinction created by the pedagogical use of patterns is not 
immediately problematic to the student or the teacher. As a result the teacher may be satisfied 
with their current understanding and usage of patterns. In order to create a conceptual change 
two things are required – dissatisfaction with their current understanding and the presentation 
of a favourable alternative.  

For preservice teaching this would best be facilitated in the treatment of the topic of patterns in 
both their mathematics preparation (Foundations of Mathematics courses) and their 
mathematics teaching preparation (Methods of Teaching Mathematics courses). In the 
foundation course, dissatisfaction with their current way of thinking can be facilitated with the 
use of pattern-based problem solving activities such as the ones presented in this article. For 
many students, these questions would be enough to strain their understanding of patterns 
enough to reveal to them that they need a stronger conceptual knowledge base of the pattern 
content. Once they have reached this stage of dissatisfaction they are ready to be presented with 
a favourable alternative. I propose that this alternative be in the form of a unit on patterns – from 
primary curriculum topics to secondary topics – initiated with the definitions suggested and 
taught with a heavy emphasis on the language of patterns.  

The treatment of patterns as content in the foundations course can then be supported in the 
teaching methods course with the presentation of data – from this article or others – on the 
effects of not creating a clear distinction between repeating patterns and number patterns. This 
can be facilitated in the context of a case study, a research assignment, or simply the reading of 
a journal article.  

Unfortunately, the luxury of course work is not available for the re-education of practicing 
teachers. The best vehicles for dissemination of information to this population are workshops, 
professional development, teaching journals, and curriculum. 

6.4 Curriculum 
One of the best vehicles by which new mathematical concepts can be delivered to in-service 
teachers is through the curriculum. Although the changes discussed are small, a treatment of 
them in the K-12 curriculum – with explicit attention to the fact that there has been a change – 



will greatly improve the dissemination of the information. However, the changes in the 
curriculum are more in the rational of how to teach than in the content matter. Other than the 
presentation of a definition all other prescriptions are pedagogically based. It needs to be made 
clear that teachers need to start using the language of patterns with their students. Only then 
will they be helping to facilitate the conceptual distinction necessary to help their students to 
choose appropriate strategies for the treatment of patterns in the future. 

7.0 Conclusion 
Patterns are the ether of mathematics. They fill the space between ideas. From the time a child 
enters schooling (pre-kindergarten) until the time they leave high school they will be exposed to 
countless patterns. In some cases this will involve the formal treatment of patterns as content 
and other times it will involve the utilization of patterns as pedagogical tools. In both cases, 
however, the concept of pattern is dealt with implicitly. That is, the students are not provided 
with any sort of explicit definitions. 

Although the elusive nature of patterns makes definition difficult, the creation of precise 
definitions of repeating patterns and number patterns is not only possible, but necessary. There 
is no shortage of examples of students’ inappropriate use of repeating patterns in the solving of 
number pattern problems. In general, there is a propensity on the part of students towards 
repeating patterns. This may be a result of the students’ conceptualization that patterns are 
repeating patterns. Thus, when faced with a situation where either a pattern is clearly presented, 
or there is indication that a pattern may be a useful problem-solving tool, there is a tendency to 
default towards a repeating pattern. Lee (1996) dealt with a similar problem in the teaching of 
algebra and concluded that it was not the inabilities of the students to spot patterns that 
prevented their success but their inability to spot algebraically useful patterns. I propose that the 
students in this study often failed to spot the useful patterns for the task at hand. I further 
propose that this need not have been the case. Appropriate re-education of preservice and in-
service teachers along with slight changes in curriculum can help reduce – if not eliminate – such 
difficulties. 
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