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Abstract 

Through research conducted in a classroom, this dissertation explores problem solving 

in choice-affluent environments where students have abundant access to resources 

beyond their own and their group's knowledge and experience. Contrary to the 

conventional notion of problem solving as an isolated activity reliant on individual 

resources, such as knowledge, experience, or sudden insights, this dissertation 

highlights the collaborative nature of problem solving. Being similar to problem solving in 

society and among mathematicians, problem solving amongst students in mathematics 

classrooms should involve accessing external resources like the work of their peers, 

technology, the internet, and social connections. Using classroom video, I conducted an 

analysis of students engaged in problem-solving activities. Combining Schoenfeld’s 

theory on resources with Koichu’s shifts and choices model for problem solving in 

choice-affluent environments and Mason’s work on shifts of attention, I investigated how 

groups collaborate in their own group and between other groups to make progress in 

solving a problem. The findings suggest that collaborative problem solving is not a 

deterministic process – the stages in the process do not follow a sequence. The 

processes that students follow when solving problems are non-linear and unpredictable 

due in part to the complex nature of the learning environment. Additionally, the research 

showcases a relatively new methodological tool, gaze-dialogue transcripts, to document 

the dialogue, gestures and gazes during collaborative problem solving from a video 

source. 

Keywords:  collaboration; problem solving; mathematics; complexity; resources; 

Thinking Classrooms  
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Chapter One - Introduction 

 I have been teaching using a Thinking Classroom framework (Liljedahl, 2019) 

since 2013, and over this time, I have noticed many benefits. I will describe the Thinking 

Classroom framework in detail later in this thesis, but for the unaware reader, I will say 

that Thinking Classrooms are classrooms where students work collaboratively on 

carefully chosen mathematical tasks in the public and vertical space of the classroom 

whiteboard. Over the years, I have continued to use this framework for many reasons, 

but primarily, I value this framework for the high level of student engagement and 

continuous opportunities for students to solve problems. In this educational model, 

teaching typically occurs after students have been working on a task – not before. And 

because of this quality, most tasks that students engage in are tasks that have not yet 

been taught and tasks that students are not yet familiar with; therefore, students are 

frequently positioned in the space of solving problems. 

 Thinking Classrooms, as a learning space, look and sound much different than 

classrooms where I used to teach. In these spaces, I have noticed student behaviour 

that I have rarely seen in my 18 years of teaching prior to 2013. Some of this behaviour 

is just plain obvious: students laughing in their groups, celebrating by giving others fist-

pumps or high-fives, running across the room to speak to another group, and even 

students solving problems well past the bell; and some of this behaviour is more subtle: 

students switching from on-task to off-task and back to on-task, asking other students for 

help to understand, and even students switching groups in order to get a better 

explanation of a mathematical topic. I have noticed these changes in behaviour, but I 

have also noticed other changes.  

 Over the years, I have become increasingly aware of knowledge and ideas 

developing in different areas of the room. Sometimes, I have seen the operator in this 

knowledge movement and other times, it is a complete mystery as to how the ideas have 

moved through the classroom. On some occasions, I can see a solution or idea form on 

one board in the room, and I can see a student in another group point to the idea and 

add the outside idea to their own group’s work. But, other times, I have witnessed an 

idea move through the room with no apparent student conversation or even student 

gazing. 
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FIGURE 1 A GROUP OF STUDENTS WORKING AT THE WHITEBOARD. 

 

I gave this task (fig. 2) to a mathematics class of grade 9 students on the first day 

of our fall semester. As my students were working in groups of three at whiteboards 

around the perimeter of my classroom, I circulated through the room watching them 

collaborate and listening to their conversations. I always appreciate listening to these 

early conversations and seeing how they begin to represent their mathematical thinking. 

Some groups were telling the story of building these cycles and taking care in writing out 

sentences describing each build. I was a little surprised by their lack of symbols and the 

care taken to write out each word (fig. 3). 

Imagine you work in a cycling shop building unicycles, bicycles, and 

tricycles for customers. One day, you receive a shipment of 10 wheels. 

Presuming that each cycle uses the same type and size of wheel, what 

are the combinations of cycles you can make using all 10 wheels? 

 FIGURE 2  A THINKING TASK. 
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FIGURE 3 A GROUP’S REPRESENTATION. 

Similar groups would use letters or diagrams to represent each cycle (fig. 4). 

     

FIGURE 4  A SYMBOLIC REPRESENTATION 

 

And some groups would move to a table to organize their thinking (fig. 5). 

Unicycles Bicycles Tricycles 

10 0 0 

1 3 1 

FIGURE 5  AN ORGANIZED TABLE 

As I was making my way throughout the room and visiting different groups, I often 

asked, “How do you know when you are done?” I asked this to get students thinking 

about organizing their thinking or to order their lists. On this day last Fall, I noticed 

something different on the other side of my room. I saw one group generating a list on 

their board that looked subtly different from the others (fig. 6). 
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FIGURE 6  AN EFFICIENT REPRESENTATION. 

 

I made my way over to this group and asked them to describe what they were thinking. 

One student in the group responded by saying that the 3’s represented the tricycles, the 

2’s were the bicycles and the 1’s were the unicycles. Having given this task to other 

classes many times before, I was not surprised with this representation showing itself – I 

had seen this before. I am always impressed with this mathematical representation. Not 

only were these students using a very efficient representation to solve the problem, but 

they were also generating their list in a carefully designed order. This solution method 

was in effect changing the problem from building cycles with ten wheels to a problem of 

making 10 with 1’s, 2’s and 3’s. As I already stated, I was not surprised to see this 

solution representation emerge in a class of 30 students, but I was surprised by what 

happened next.  

After my conversation with these students, I stepped back towards the center of 

my room to survey my class and see what group I needed to attend to next. As I looked 

around the room, I noticed this unique solution representation was on the two 

neighbouring boards to the original group. Did these other groups come up with this 

unique representation on their own? Or is it possible that they overheard my 

conversation with the originating group?  

On another day, I began my lesson by giving my students the following diagram 

(fig. 7): 
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FIGURE 7  ANOTHER THINKING TASK. 

 

I said that I can make squares by connecting four dots with lines. I then asked, “How 

many different squares can I make?” After posing this question, I asked my students to 

go to their whiteboards again, in their groups of three, and work towards a solution. I 

moved to the center of the room again to begin my observations.  

 The groups began working on their solutions with an energetic engagement. 

There is something about these kinds of problems that have an easy entry, that really 

generates conversation and activity amongst all students. This is why I like beginning 

many of my classes with these tasks – they provide an early opportunity for 

mathematical conversation and thinking for all students, and they provide situations that 

can improve student confidence in mathematics. As I was watching my students working 

on their whiteboards, I noticed a lot of typical solutions around the room. Some students 

would trace out different squares and keep tallies of their counting (fig. 8), some groups 

would complete their counting, organize their counting in a table and notice patterns in 

the table (fig. 9) and some groups would just count squares in a haphazard way, with no 

particular plan or order (fig. 10). 
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FIGURE 8  TALLIES OF SQUARES. 

 

 

FIGURE 9  ORGANIZED COUNTING IN A TABLE. 

 

 

FIGURE 10  COUNTING SQUARES WITH NO PLAN. 
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After ten or fifteen minutes, activity and engagement began to diminish, and 

many groups around the room seemed to settle around a solution of 30 squares. When 

groups begin to feel that they are done, or when they get stuck, this is when classroom 

management can become more of a problem, especially with a room full of grade 9’s. At 

this time, I found myself trying to keep groups on task by encouraging them to keep 

looking and saying “there may be more.” I noticed a group in the far corner of the room 

that was still very actively engaged in their discussion, and on their whiteboard, I noticed 

a slightly different diagram (fig. 11). 

 

FIGURE 11  A DIFFERENT SQUARE TO COUNT. 

This group had noticed that their squares did not have to have horizontal and 

vertical sides; rather, their squares could possibly have tilted sides. I moved towards 

them to give encouragement and maybe ask some questions, and as I did so, I noticed 

a change in my classroom. The distraction and off-task behaviour was changing back to 

the sound of engagement. It’s hard to describe this change, but I can tell you that a room 

full of distracted and off-task grade nines sounds different than a room full of actively 

engaged problem solvers. As I was making my way over to this group, the whole class 

was becoming actively engaged again. I looked around the room, and almost every 

board had tilted squares on them (fig. 12). 
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FIGURE 12  MORE BOARDS WITH TILTED SQUARES. 

How did this happen? Did they see the tilted squares on their own and then use it? Did 

they notice me moving to that first group in the corner? Did these other groups notice the 

tilted square possibility in isolation, or did they somehow gather this idea from the 

originating group?  

Problem solving is what one does when one does not know what to do (Resnick 

& Glasser, 1976). Problem solving permeates all content at all levels in a mathematics 

classroom. It is a stated goal in most curriculum documents (Introduction to Mathematics 

| Building Student Success - B.C. Curriculum, n.d.), and most educators would describe 

problem solving on a shortlist of desired learning outcomes for their students. For much 

of the last 80 years, problem solving has been studied at the individual level (e.g., 

Dewey, 1933; Pólya, 1961; Schoenfeld, 1985; Carlson & Bloom, 2005; Mason, 1989). In 

the last two decades, with the acceptance that mathematics and problem solving is often 

highly collaborative, there has been a shift in interest towards studying problem solving 

in groups (Ambrus & Barczi-Veres, 2016; Nelson, 1999). This is a step in the right 

direction, as it comes closer to resembling actual problem solving, but it is still mostly 

confined to problem solving within a group – as far as I have found, there has not been 

much investigation looking at problem solving within the whole classroom and how 

students work individually, within groups and between groups, and problem solving in 

groups where groups are able to see and share ideas simultaneously with other groups 

is nonexistent. 



 

 

9 

Problem solving in mathematics classrooms has been a focus for mathematics 

educators, curriculum designers, and education leaders since at least Pólya (1949). 

There is little argument around the desire to have students engage in solving problems 

as mathematicians do in order to develop understanding, improve motivation and 

engagement and to encourage connections in the subject. The focus on problem solving 

in mathematics education research can be sorted into three categories (Stanic & 

Kilpatrick, 1989): as a cognitive enterprise, as something to be taught, and as something 

to teach through. The study of problem solving in collaborative spaces may be related to 

each of these three, but in many ways, it is also unique.  

In the example of students solving the bicycle problem (p. 7), I had noticed that a 

particularly successful problem representation originated in one group; and then after a 

short time, the same representation was being used by three other groups in the class. 

In the square problem, I noticed that including tilted squares in the count began in one 

group and was very quickly adopted by other groups. These particular representations or 

solutions could be considered as a breakthrough moment for these groups, as they 

provided a shift in the interpretation of the problems and allowed a more direct pathway 

to a final solution. Given that the shift was likely a moment of inspiration for one of the 

groups, was it developed in the same way by the other groups? Or, perhaps more likely, 

did the other groups acquire these ideas by overhearing or observing the ideas?  

These are just two examples of this phenomena. I have been teaching using 

Thinking Classrooms for 10 years, and I have been becoming increasingly aware of this 

phenomenon. It is quite different from my experiences in my earlier classrooms. I 

remember walking through and observing student work in my earlier teaching days, and 

most progress that was made was due to my direct involvement with each student. I 

would rarely see a unique insight or a creative approach emerge from more than one or 

two students. In fact, when I did see something from one student, my only method for 

sharing with the rest of the class would be to stop the class, place the student’s work 

under a document camera, and ask for the rest of the class to notice and hopefully 

understand the method. Contrast this with today’s Thinking Classroom and I am almost 

expecting whole class progress once I see something emerge from one collaborative 

group. 
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Over the past 10 years of using the Thinking Classroom framework, I have been 

noticing a different mode of knowledge transfer. I have become more aware of the 

lessening need for me, the teacher, to orchestrate when, how and with whom the ideas 

need to be shared. I have become more aware of ideas emerging from multiple groups, 

sometimes almost simultaneously, and then before too long, the ideas become common 

to the whole class. In fact, instead of me having to share an idea with each of my thirty 

students, I am seeing the ideas move through the room, and I may have to spend more 

directed energy with only one or a few students.  

Ideas and strategies are being shared in this Thinking Classroom, but I am not 

aware of exactly how this is happening. Somehow, progress and learning is moving from 

the student, to the group and eventually to the whole class, and I am not a necessary 

component in this chain of events. If I am not the one to point to a new idea or learning 

moment, then how can the whole class still make this progress? Not only am I not the 

most instrumental actor in this arrangement, but I am also seeing that progress is more 

efficient without me. Somehow, students and groups and the whole class are making 

progress in tasks without my direct input and more efficiently than in my earlier teaching 

days. 

Thinking Classrooms are spaces where students appear to solve problems with 

more success than when they work individually. There is something that is happening in 

these highly collaborative environments that is acting like a catalyst in the reaction of 

solving problems. In this dissertation, through a detailed analysis of classroom video, I 

plan on uncovering the details of this catalyst and to understand the interactions that are 

at play during collaborative problem solving and the interactions that support knowledge 

and ideas to move through these environments.  
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Chapter Two - Literature Review 

In an online interview (https://www.youcubed.org/resources/the-nature-of-21st-

century-mathematics), Jo Boaler, a Stanford University mathematics educator, was 

speaking with Keith Devlin, a Stanford University mathematician. The interview was 

generally about the current state of mathematics education from a mathematician’s 

vantage point. This commentary was drawing attention to how many students were 

experiencing mathematics through their high school education, and how this current 

state might be seen as far different than the mathematics that mathematicians engaged 

in virtually for the whole of history; and perhaps more importantly, the mathematics that 

is used in society today is completely different than the mathematics that is taught in 

schools. There were two points that Devlin made that resonated with me and my work 

on problem solving in high school classrooms. The first was a metaphor that Devlin used 

to compare the work of mathematicians with conducting an orchestra, and the second 

point was how Devlin described the tools and resources used by mathematicians in the 

21st century. 

Devlin described the work of a mathematician today as being similar in ways to a 

conductor of an orchestra, where a mathematician from history (pre-1980’s) was more 

like being a musician in the orchestra itself. Before the 1980’s, mathematicians had to 

learn and be experts in a large variety of different mathematics: number, algebra, 

geometry, calculus, and more. Like an orchestra, in order to make good music, 

mathematicians needed to be skilled and proficient in all of the instruments of 

mathematics. After the 1980’s, computer software and applications were able to do all of 

the procedural mathematics faster and more accurately than humans, and Devlin 

suggests that the mathematician’s role became more like that of the conductor of the 

orchestra. As a conductor, a mathematician needs to be familiar with the quality and 

purpose of all of the different instruments (areas in mathematics), but one no longer 

needs to be an expert on each instrument. To solve problems, mathematicians need to 

know what types of mathematics is necessary, and how different areas might need to 

work together, but they do not need to be experts in each area. This is a different 

message than that being communicated in most school mathematics today. In schools 

today, students are expected to become highly proficient in number, in geometry, in 

algebra, and they are engaged in these topics much like mathematicians have engaged 

https://www.youcubed.org/resources/the-nature-of-21st-century-mathematics
https://www.youcubed.org/resources/the-nature-of-21st-century-mathematics
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in them for the past hundreds of years. This makes me wonder if schools today should 

be teaching students the ways that mathematicians do mathematics today? 

The second point that Devlin made in this interview was that mathematicians 

today solve problems much differently than how they did in the past. In the past, many 

mathematicians would work on problems as a solitary exercise, using pencil and paper 

or chalk and a chalk board. If not rare, collaboration was slow, often only occurring 

through letters exchanged with colleagues or through discussions at annual 

conferences. Today, the resources (or tools) available and used by mathematicians are 

far different, and in order to use these tools, mathematicians need to learn a new skillset. 

Devlin shared a slide (fig. 13) showing the tools that he now uses as a mathematician to 

solve problems: 

 

FIGURE 13  SLIDE FROM DEVLIN'S PRESENTATION 

 

Google, Wikipedia, email, YouTube, WolframAlpha, spreadsheets, MathWorks, 

mathoverflow, Wolfram Mathematica, and graphing calculators are all extremely 

powerful tools for solving problems, and Devlin suggests that these are the tools that he 

uses as a mathematician to solve problems. Today, I would add Desmos, Geogebra and 

Sketchpad to this list. This made me realize that mathematics in our world has changed 

dramatically since the 1980’s, so shouldn’t the mathematics that we teach in our schools 

reflect this change? 
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The ways that mathematicians solve problems today has changed. They do not 

need to be experts in every area of mathematics and mathematicians today have access 

to resources that are very effective and efficient, so perhaps the ways in which we 

educate our students to be capable and confident problem solvers should also change. 

In this review, I will look at the history of problem solving in mathematics education.  

Problem solving has long been a valued component in mathematics education 

(NCTM, 2000; Burnard & White, 2008; Craft, 2000; Sawyer, 2011; Sternberg, 1988; 

Szabo et al., 2020), but the ways in which we teach our students to problem solve and 

what researchers know about problem solving has changed. In this literature review, I 

will share how our knowledge and understanding of problem solving from the early days 

of Dewey and Pólya has evolved, and how it now better represents the problem solving 

needed in citizens of our 21st century societies. Much like Devlin drew attention to how 

mathematics today is far different from the mathematics of yesterday, I will also draw 

attention to how problem solving in the literature does not fully meet the demands of 

problem solving in society today.  

Problem solving – An individual activity 
Let us begin by looking at some different ways of defining a problem and the 

process of problem solving. From a psychology perspective, problem solving is the 

simple act of trying to achieve a goal where the pathway to the goal is blocked 

(Kilpatrick, 1985). John Dewey wrote more generally about problem solving when he 

described how we overcome a difficulty through some sort of action and reflection 

(Dewey, 1910). Brownell (1942) put a more mathematical tone to problem solving when 

he wrote: 

Problem solving refers (a) only to perceptual and conceptual tasks, (b) the nature 

of which the subject by reason of original nature, of previous learning, or of 

organization of the task, is able to understand, but (c) for which at the time he 

knows no direct means of satisfaction. (d) The subject experiences perplexity in 

the problem situation, but he does not experience utter confusion.... Problem 

solving becomes the process by which the subject extricates himself from his 

problem .... Defined thus, problems may be thought of as occupying intermediate 

territory in a continuum which stretches from the 'puzzle' at one extreme to the 

completely familiar and understandable situation at the other. (p. 416) 
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In this definition, we understand problem solving to be unique to the individual, meaning 

that something that is a problem to one is not necessarily a problem to another nor a 

problem in the future. Liljedahl et al. (2016) describes problems as “tasks that cannot be 

solved by direct effort and will require some creative insight to solve” (p. 6), and problem 

solving as the process by which one extricates oneself from the problem and achieves 

satisfaction. 

John Dewey (1859-1952) wrote about problem solving in 1933 when he wrote 

about overcoming difficulty through intelligent action and reflection. Dewey suggests that 

in order to overcome a difficulty, one requires both ideas and facts. “Mere facts or data 

are dead, as far as the mind is concerned, unless they are used to suggest and test 

some idea, some way out of a difficulty. Ideas on the other hand are mere ideas, idle 

speculations, fantasies, dreams, unless they are used to guide new observations of, and 

reflections upon, actual situations, past present, or future” (Dewey, p. 199). For Dewey, 

ideas guide the problem-solving process, but they are difficult to explain or predict. 

Having ideas are a critical component to solving a problem with intentionality, but it is 

“not so much something we do, as it is something that happens to us” (Dewey, p. 145). 

In Dewey’s description of problem solving, ideas need to be tested with facts, and then 

there needs to be a reflection phase to judge the process. If the process does not solve 

the problem, then the idea needs to be adjusted or a new idea needs to be found. 

Dewey draws comparison to the scientific method for solving problems, in that the idea 

leads to a conjecture that then must be tested and evaluated (or reflected upon). Dewey 

does not provide much detail on the conception of ideas. Do ideas come from the 

environment, or are they developed through an inner mental process? Is it past 

experiences that generate ideas, do ideas just magically occur or do ideas come from 

outside sources? These are all questions that would take years to develop responses to, 

and in a little more than ten years, George Pólya comes on the scene with some newer 

and more refined ideas on problem solving. 

George Pólya (1887-1985), a Hungarian mathematician, published a ground-

breaking book on Problem solving titled How to Solve it (Pólya, 1945). The purpose of 

the book was to teach students and professionals a systematic approach to solving 

problems. In addition to providing a structured approach to problem solving, Pólya also 

emphasized the importance of creativity, intuition, and persistence in the problem-
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solving process. He believed that problem solving was a skill that could be learned and 

improved upon, and his book provided practical strategies and examples to help readers 

develop their problem-solving skills. In this seminal book, Pólya breaks problem solving 

into four distinct stages:  

Stage 1 - Understanding the problem 

Stage 2 - Devising a plan 

Stage 3 - Carrying out the plan 

Stage 4 - Looking back 

It is this second stage, devising a plan, where Pólya makes some suggestions as to 

where ideas may come from by providing a list of heuristics: 

Stage 2 - Devise a Plan 

● Can you find an analogous problem that you can solve or have already 
solved? 

● Can you find a more general problem that you can solve or have already 
solved? 

● Can you find a more specialized version of the problem that you can 
solve or have already solved? 

● Can you find a related problem that you can solve or have already 
solved? 

● Can you change the problem into a problem that you can solve or have 
already solved? 

● Can you find a subproblem that you can solve or have already solved? 

● Can you add some new element to the problem to create a problem that 
you can solve or have already solved? 

● Can you decompose the problem and recombine it into a problem that 
you can solve or have already solved? 

● Can you work backwards? 

● Can you draw a picture? 

In this list of heuristics, the first eight reference personal experience as a source for 

ideas, and the last two reference specific heuristics that are developed later in the book. 

Mathematicians and experienced problem solvers approved of these stages and the list 
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of heuristics because it aligned with their own personal experiences. A difficulty arises, 

however, if you are a student with no prior experiences to draw from for ideas. For 

example, how do you teach students to find an analogous problem that they have 

already solved if they have solved few or no analogous problems? In this way, problem 

solving is like being a member of an elite club – a club whose membership is restricted 

to people who can already solve problems. If prior knowledge and prior experience is all 

that a problem solver can draw on to gain an idea and make progress in a problem, then 

this model does little to support beginning problem solvers, and yet, this model for 

teaching problem solving gained so much momentum in the 1950’s and 60’s that there 

are still traces of Pólya’s 4 stages to solving problems in most school textbooks to this 

day. 

While Pólya’s focus was on how to solve problems, Schoenfeld’s book 

(Schoenfeld, 1985) entitled Mathematical Problem Solving is an empirical critique of 

Pólya and is focused on how to teach problem solving. Where Pólya was interested in 

how mathematicians solve problems, Schoenfeld was more interested in how students 

solve problems. Schoenfeld emphasizes the importance of metacognition, or the ability 

to reflect on and monitor one's own thinking processes. He argues that successful 

problem solvers are able to engage in metacognitive strategies such as monitoring their 

progress, evaluating their strategies, and revising their approaches when necessary. His 

book is framed by four categories of knowledge and behaviour that are used to explain 

human problem-solving behaviour: Resources, Heuristics, Control and Belief Systems. 

Resources are the “foundations of basic mathematical knowledge” (Schoenfeld, p. 12) 

that students bring to the problem. Heuristics are the “techniques used by problem-

solvers when they run into difficulty” (Schoenfeld, p. 74). Control describes the executive 

decisions made when students are solving problems: “making plans, selecting goals and 

sub-goals, monitoring and assessing solutions as they evolve, and revising or 

abandoning plans when the assessments indicate that such actions should be taken” 

(Schoenfeld, p. 27).  

Schoenfeld’s description of control begins to consider a collaborative component. 

Referencing an experiment by Mugny and Doise (1978), Schoenfeld points out that more 

progress is made when students with different cognitive strategies work together when 

compared to children with similar cognitive strategies. Not only is Schoenfeld describing 
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value in the number of students when students solve problems, but he is also describing 

value in the variety of students. Problem-solving approaches “evolve during the solution 

as a result of interactions between the two students. Once it emerges, it can then 

become part of the individual students’ repertoire” (Schoenfeld, p. 142), but this is the 

extent to which collaboration is addressed.  

Schoenfeld also states that some of Pólya's heuristics for problem solving could 

not be directly taught. Schoenfeld notes that some of the heuristics, such as "look for a 

pattern," "solve a simpler problem," and "make a drawing or diagram," were easy to 

teach and could be explicitly taught to students; however, he argues that other 

heuristics, such as "use your intuition" and "be creative," were more difficult to teach 

directly. Schoenfeld describes these heuristics as more like habits of mind that develop 

over time through practice and experience. He suggests that the development of these 

habits of mind requires students to engage in authentic problem-solving activities, rather 

than just learning a set of problem-solving strategies in isolation.  

My focus in this discussion on problem solving is on the foundations of 

mathematical knowledge that students bring to the problem-solving experience – 

resources. Resources are the facts, procedures and skills that a problem solver brings to 

a problem – in short, the mathematical knowledge. Schoenfeld was interested in the 

nature of the knowledge that students have at their disposal and in how this knowledge 

is organized and accessed. 

 Regarding the nature of knowledge, Schoenfeld quotes research (de Groot, 

1965, 1966; Simon, 1980) that describes this knowledge as “stored chunks in memory.” 

Simon’s research shows that chess masters have approximately 50000 chunks stored in 

memory just for routine play. They use the word ‘chunk’ to describe not only a unit of 

memory but also an action or response associated with it. Schoenfeld compares this to 

how a literate person reacts when reading a stop sign. A literate person will instantly 

access the associated chunk that contains a meaning, and an appropriate action may 

follow. Schoenfeld suggests that this may be similar to how mathematicians access their 

resources when solving problems, and that these chunks are learned through years of 

experience in problem solving (Schoenfeld, 1985, p. 50). Schoenfeld moves from this 

itemized description of resources to another that is more situational, suggesting that 

problem solvers are able to identify a problem type and recall the associated technique 
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or procedure for a solution. This type of problem schemata approach to resources is still 

problematic for beginning (or novice) problem solvers. Expert problem solvers have the 

experience to be able to draw on resources such as chunks or problem types, because 

of their experience and large repertoire of problem-solving performance; however, 

novice problem solvers have a smaller resource bank, and worse, many of their 

resources may be applied incorrectly (Schoenfeld, 1985, p. 51). 

 Schoenfeld summarizes that the resources that problem solvers access are like 

automatic responses, stereotypical responses to stereotypical situations. On their own, a 

resource drawn on and applied to answer a problem does not necessarily fit with our 

understanding of problem solving. If a task can be completed by simply implementing a 

resource recalled, then this would be like answering a routine problem. It is with respect 

to non-routine problems that we are interested. With non-routine problems, students will 

still access their resources of scripts, schemata or frames accumulated from previous 

experiences, but these resources will be drawn on in order to make steps towards 

solving a problem. This explains why there is more to Schoenfeld’s model than just 

resources; students also need to make use of heuristics, control and belief systems to 

complete the problem-solving picture. In problem solving, a variety of factors shape 

behaviour.  These include the problem solver’s intuition or informal knowledge about the 

problem; knowledge of facts and definitions; the ability to correctly complete algorithmic 

processes; ability to use routine procedures; and knowledge about the rules of discourse 

in the problem domain (Schoenfeld, 1985). With beginning problem solvers, their 

resource inventory may be small, but worse, some of their inventory may also be 

incorrect. This could be catastrophic if the solver is working alone, but it might be 

mitigated in collaborative environments. 

Schoenfeld notes that one of the challenges in teaching problem solving is 

helping students develop a rich repertoire of resources that they can draw upon when 

needed. He suggests that this can be achieved by providing students with a range of 

problem-solving experiences and by encouraging them to reflect on their own problem-

solving processes. Good problem-solvers need to have a lot of resources to draw upon, 

and the best way to accumulate these resources is to have lots of success in solving 

problems. This is something we have seen before and leaves us with the same question, 
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how do novice problem-solvers solve problems if they do not have the past experiences 

to draw upon? 

Mason, Burton and Stacey (1982) combine both Schoenfeld’s framework for 

successful problem solving and Pólya’s four stages for solving problems in their book 

titled Thinking Mathematically. In this book, Mason employs a series of tasks to help 

describe the phases of problem-solving: Entry, Attack and Review. These three stages 

resemble Pólya’s stages by combining the middle two: Pólya’s Make a plan and Carry 

out a plan are combined by Mason into the Attack phase. Mason pays particular 

attention to the part in problem-solving when the solver is stuck, and he describes 

processes that specifically deal with this state. He refers to these processes as 

specializing and generalizing.  

After the entry phase where students work to understand the problem, Mason 

suggests entering the attack phase by Specializing. Specializing is examining the 

problem by looking at specific examples. It is at this point where the solver may get stuck 

and then go back to the entry phase to better understand the problem before attacking 

again, or the solver experiences an AHA moment and progresses to the review stage by 

generalizing their solution. Mason describes this position of being Stuck in a very 

positive light, as it is a necessary precondition to the problem-solving process: “I hope 

that you will get happily stuck and learn from it!” (Masonet al., p. 45). He first describes 

the process of Specializing as a means to get unstuck, and then introduces the process 

called “Mulling” as a means to get unstuck. Mulling is the process where the 

subconscious plays a role. “Attack now turns into a waiting game, waiting for a fresh idea 

or insight… If you feel desperate to do something, then I recommend fresh air and 

exercise” (Mason et al., p. 99). Creativity is often demonstrated when moving from stuck 

to unstuck, so this provides a nice model for the analysis of creativity in the classroom 

(Chamberlin et al., 2022). It is the moment where solvers move from the entry phase 

(understanding the problem) into the attack phase (or making a plan). Unlike Pólya’s 

heuristics, Mason is suggesting the solver might need to rely on extra-logical processes 

such as illumination, insight and creativity to go beyond their resources that their 

repertoire of past experience might afford them.  

Although Mason seems to have solved the Pólya/Schoenfeld conundrum for 

novice problem-solvers, he has introduced a new problem. How does one teach novice 
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problem-solvers creativity, insight and illumination? How do these ideas manifest into 

resources for the student problem-solvers? This idea of mathematicians, or problem-

solvers in general, relying on extra-logical processes to make progress in a problem was 

not new. In fact, there is generally two different categories for models of problem-solving 

processes (Rott, 2021). 

Much of the literature on problem solving in mathematics education describes 

problem solving from a non-empirical process (Rott, 2021). Models of the problem-

solving process were developed through author’s observations of their own problem-

solving processes or processes of people they are familiar with; and as a result, models 

for problem-solving processes are not based on empirical observations or data. Classic 

models of problem-solving processes can be divided into two categories: Intuitive or 

Creative models and Logical models.  

The concept of intuitive or creative problem-solving models can be traced back to 

Poincaré's (1908) self-reflection on his own problem-solving processes. Hadamard 

(1945), a mathematician, and Wallas (1926), a psychologist, further developed 

Poincaré's ideas by emphasizing the role of subconscious activities in problem-solving 

processes. They proposed a four-phase model, which includes (i) preparation, where the 

problem solver works on a difficult problem but cannot find a solution, (ii) incubation, 

where the problem solver thinks about the problem but in a non-focused way, (iii) 

illumination, where suddenly a brilliant idea appears after some time, often hours or even 

weeks, and (iv) verification, where the idea is checked for its accuracy. This model is 

commonly used to summarize the ideas of Hadamard and Wallas.  

Dewey (1933) introduced the idea of logical models for problem-solving 

processes, which consist of five phases: (i) encountering a problem and generating 

suggestions, (ii) specifying the problem and intellectualizing it, (iii) approaching possible 

solutions and developing a guiding idea or hypothesis, (iv) reasoning in a narrow sense 

by developing logical consequences of the approach, and (v) testing the hypothesis by 

action and accepting or rejecting the idea based on experiments. Unlike Wallas' model, 

Dewey's model does not include any subconscious activities. Pólya's (1961) famous 

four-phase model – (i) understanding the problem, (ii) devising a plan, (iii) carrying out 

the plan, and (iv) looking back – draws upon Dewey's work, as noted by Neuhaus 

(2002). 
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Most of the research on problem solving has been around the logical model 

because it is very linear and organized and easier to describe (Rott, 2021). However, 

most of this research acknowledges an extra-logical process as part of the genuine 

problem-solving experience, but it does not address it directly due to the difficult nature 

in describing events like an a-ha moment or a creative insight.  

By reading Pólya, through Schoenfeld and into Mason et al., one sees a 

progression in the research on problem solving. It is interesting to think about Pólya’s 

four-stages in solving problems from a collaborative perspective. Although not directly 

referenced, it is implied through much of this book that students are working individually. 

In fact, most of the literature on problem solving contained an individual perspective until 

later in the 20th century. Mason et al. (1982), while using a model very similar to that of 

Pólya’s, focused on the value of being stuck in the problem-solving process. Schoenfeld 

(1985, 2016) describes resources, heuristics, control and belief systems as contributing 

factors to a person’s success in problem solving. In order to be good at problem solving, 

a person would need to have lots of resources, but in order to have lots of resources, a 

person needed to have lots of success in problem solving (Pruner & Liljedahl, 2021). 

This circular problem is similar to that which came up in Pólya’s work requiring prior 

experiences to draw from in stage 2. How can a person develop a repertoire of 

resources/experiences when they have not yet been successful in problem solving?  

This highlights the problem with focusing only on the individual in problem solving.  

In the previous two decades of the 20th century, mathematicians were becoming 

more accustomed to working with others with a higher frequency of conferencing due to 

the ease of world travel and with the beginning of the internet age where communication 

and collaboration could happen with the click of a button (Schoenfeld, 2016). So, the 

time was ripe for mathematics researchers to shift their attention from the individual to 

the collective in problem-solving research. 

Problem solving – A collective activity 
 By the 1980’s, researchers were becoming more attuned to the social make-up 

and benefits provided in classroom settings. The math classroom is a dynamic social 

environment created collaboratively by the participants, where the teacher and students 

mutually interpret each other's actions and intentions based on their individual 

perspectives and objectives (Mehan, 1978). Researchers were increasingly using group 
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problem solving in classrooms as data for their research (Dees, 1983; Lesh & 

Akerstrom, 1982; Noddings, 1982; Schoenfeld, 1982; Granberg, 2016), and they were 

also suggesting that collaborative problem solving should be considered for classroom 

instruction. 

 Through the 1990’s, there was a trend towards an understanding of problem 

solving in terms of situated cognition (Resnick, 1991; Lave & Wenger, 1991; Artzt & 

Femia, 1999; Bjuland, 2002). Situated cognition suggests that the way people think and 

reason is not separate from their physical and social surroundings, but is instead 

grounded in those surroundings. This means that people's cognitive processes are 

influenced by the tools, technologies, and social practices they use and the tasks they 

are trying to accomplish. The research focus in the 1990’s was on mathematical 

reasoning in solving problems and reasoning processes of students working in 

collaborative groups. Resnick, Levine and Teasley (1991) pushed the conception of 

cognition from the individual to the collective, arguing “that the social context in which 

cognitive activity takes place is an integral part of that activity” (p. 4). “Groups are 

especially preferred when several kinds of knowledge and expertise are required” (p. 

14).  

Although the problem-solving framework developed by Pólya, Schoenfeld and 

Mason in the earlier years has remained relatively intact, the research was shifting its 

focus from problem solving as an individual endeavour to problem solving in a social 

context. The benefits of this shift were manifold. Problem solving in a social environment 

more accurately reflected problem solving in the real world where resources were not 

limited to what was individually remembered or individually experienced, heuristics could 

emerge from the collaboration of a group that may not have belonged to any single 

member and, above all, collaborative problem solving was much more in line with how 

mathematicians solved problems.  

The trend towards valuing the collaborative was also happening within the larger 

community. Likely due to the introduction of computers and a more technologized 

society, the community was beginning to value a skillset more oriented toward group 

thinking and collaboration. In Boaler’s book, Mathematical Mindsets (2015), she shares 

two tables (fig. 14) showing the Fortune 500 “most valued” skills in 1970 and in 1999 

(Boaler, p. 28). Problem solving and Teamwork move from the bottom of the list in 1970 
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to the top of the list in 1999. This clearly shows a trend within the broader community of 

placing value on problem solving and collaboration. 

In the year 2000, the National Council of Teachers of Mathematics (NCTM, 2000) 

published its Principles and Standards for School Mathematics. In this document, not 

only was problem solving the first of five process standards, but collaboration and 

communication were also highlighted as important mathematical processes to support 

student learning. “Solving problems is not only a goal of learning mathematics but also a 

major means of doing so. It is an integral part of mathematics, not an isolated piece of 

the mathematics program … Mathematical communication is a way of sharing ideas and 

clarifying understanding. Through communication, ideas become objects of reflection, 

refinement, discussion, and amendment” (NCTM, 2000). By the end of the 20th century, 

problem solving has established itself as the central focus in the teaching and learning of 

mathematics, and the mathematics education research field has shifted its focus from 

problem solving as an individual activity to problem solving as a collaborative activity. 

This trend to the collaborative not only recognizes the shift in values for the general 

community, but it also shows a recognition in how mathematicians have changed how 

they work on mathematics. 

Collaborative problem solving in this time was limited to studying students solving 

problems within small groups (Schoenfeld, 1982; Noddings, 1982; Dees, 1983; Bjuland, 

FIGURE 14: MOST VALUED SKILLS FROM FORTUNE 500 
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2002; Granberg, 2016; Carbonneaue et al., 2020; Roberta & Marta, 2021) where 

resources were shared and heuristics emerge from the small group. I have not found 

many studies that looked at large group, group to group, or even whole class 

collaboration for problem solving. Furthermore, researchers still struggle to explain how 

some problems were solved by illumination, a-ha moments or other extra-logical 

processes.  

Collaborative problem solving has become more common in research in recent 

years as educators are being made more aware of the multiple benefits that arise from 

using these models (Angawi, 2014; Nebesniak, 2007). Students tend to enjoy the 

process of solving problems more when they are collaborating with their peers 

(Camacho-Morles et al., 2019). This enjoyment leads naturally to more positive feelings 

about the subject and improved self-confidence with respect to mathematical ability 

(Nebesniak, 2007). The mathematical output is better than in the case of the more 

traditional individual problem-solving model (Dillenbourg, 1999; Johnson & Johnson, 

1999). There is a by-product of improved social and communication skills from 

collaborative problem solving that is also highly valued in today’s society (Fiore et al., 

2010). Lastly, while working within a group, students are exposed to a wider range of 

problem-solving strategies, alternative solutions and in general, resources (Gillies, 

2000). 

Collaborative problem solving in classroom environments can take many forms. 

Students can be put into small groups to solve problems within their group, whole 

classes can participate in a problem-solving exercise through discussion like the 

Harkness method (Soutter & Clark, 2021), or students could be left to their own direction 

and seek out collaboration from peers of their choice. Of course, this list is not complete, 

but it is intended to provide some scope as to the variety of contexts in which 

collaborative problem solving can occur. Collaboration is a means to improve problem 

solving in the classroom, but how does it improve problem solving and what does current 

research say about developing problem-solving skills in our students?  

Contemporary Research on Collaborative Problem -Solving 
With the emergence of problem solving as a collaborative classroom activity 

came a focus on research into how best to do this. According to Lester and Cai (2016), 

there have been significant improvements in our understanding of the various factors 
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that influence problem solving in mathematics education, including emotional, cognitive, 

and meta-cognitive aspects (Lesh & Zawojewski, 2007; Lester & Kehle, 2003; 

Schoenfeld, 1985, 1992, 2013; Silver, 1985). A great deal of research has also been 

conducted on teaching problem solving in math classrooms (Kroll & Miller, 1993; Lesh & 

Zawojewski, 2007; Wilson, Fernandez, & Hadaway, 1993) as well as teaching math 

through problem solving (Lester & Charles, 2003; Schoen & Charles, 2003). However, 

there are still many more questions than answers when it comes to this complex form of 

activity (Cai, 2003; Lesh & Zawojewski, 2007; Lester, 1994, 2013; Lester & Kehle, 2003; 

Schoenfeld, 1992, 2013; Silver, 1985). There is general agreement within the field of 

mathematics education that developing students' problem-solving skills should be a 

main focus of classroom instruction (National Council of Teachers of Mathematics, 1989, 

2000), and there has been much progress made in understanding how to improve 

students' problem-solving skills through classroom instruction, and research-based 

insights are now available (Cai, 2010). Lester & Cai (2016) describe six features with 

respect to problem solving that current research has been able to address: 

1. Should problem solving be taught as a separate topic or through problem-solving 

activities? 

Teaching problem solving is usually done through isolating strategies or 

heuristics and demonstrating which types of problems are best used for each 

heuristic. Over the past several decades, research has shown that teaching problem 

solving does not improve student’s problem-solving skills (Begle, 1973; Charles & 

Silver, 1988; Lester, 1994; Schoenfeld, 1985). Teaching through problem-solving 

activities is the teacher selecting a series of tasks for the students to work through as 

problems, and then highlighting the learning goals as students make progress 

through these tasks (Lester & Charles, 2003; Schoen & Charles, 2003). Teaching 

through problem solving has been shown to improve student problem-solving 

performance mostly due to the fact that this teaching method helps students to 

develop a deeper conceptual understanding of the material. Research also shows 

that teaching students specifically how to problem-solve has little impact on students 

becoming better at problem solving (Lesh & Zawojewski, 2007; Lester, 1994; 

Schoenfeld, 1985, 1992). 

2. What sort of time is required to teach through problem solving? 
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It has been determined that the best way for students to become proficient at 

problem solving is for them to have lots of experience in solving problems (Cai & Nie, 

2007; Gu, Huang, & Marton, 2004; Lester, 1994). In order for students to become 

successful problem solvers, they need to have consistent and long-term exposure to 

solving problems. The problem-solving skill is an emergent quality that comes from 

many quality and varied experiences with solving problems. It has been determined 

that problem solving is not a switch that students suddenly develop proficiency in; 

rather, problem solving is a long-term instructional goal for teachers to nurture 

through continuous problem-solving experiences. 

3. What types of instructional activities should students engage in? 

Research has shown that students show the most growth when presented with 

cognitively demanding tasks (Cai, 2014; Stein, Remillard, & Smith, 2007). Lappan 

and Phillips (1998) have generated a list of criteria for a cognitively demanding task, 

or a “good mathematics problem:” 

• The problem has important, useful mathematics embedded in it. 

• Students can approach the problem in multiple ways using different solution 

strategies. 

• The problem has various solutions or allows different decisions or positions to 

be taken and defended. 

• The problem encourages student engagement and discourse. 

• The problem requires higher-level thinking and problem solving. 

• The problem contributes to the conceptual development of students. 

• The problem connects to other important mathematical ideas. 

• The problem promotes the skillful use of mathematics. 

• The problem provides opportunity to practice important skills. 

• The problem creates an opportunity for the teacher to assess what his or her 

students are learning and where they are experiencing difficulty. 

It has been shown that students who have been exposed to mathematics through 

cognitively demanding tasks improve in their ability to reason and communicate, 

promote their conceptual understanding, and captures their interest and curiosity 

(Cai, 2014; Hiebert, 2003; NCTM, 1991; Van de Walle, 2003). 



 

 

27 

4. What is the teacher’s role in orchestrating a problem-solving classroom? 

Student’s opportunities to learn are not solely dependent on the type of 

mathematical task; it is also important to consider the discourse that takes place 

during and after the task. Considerable research has shown a connection between 

classroom discourse and student learning (Cobb, 1994; Hatano, 1993). Good 

discourse is that which encourages thinking and reasoning on the part of the student. 

This can be done simply by allowing students to struggle before coming to solutions 

on their own, rather than stepping in early to rescue a student in their difficulty. It is a 

teacher’s role to ask questions rather than answer them, and to encourage students 

to participate in their own solutions rather than to demonstrate an efficient teacher 

solution (Rasmussen, Yackel, & King, 2003). 

5. How can positive student beliefs be nurtured? 

To support students in becoming effective problem solvers, it is important to 

cultivate positive attitudes toward mathematics in general and problem solving 

specifically. In classrooms where students are active participants in solving problems 

and posing problems, students show improved problem-solving performance and 

attitudes towards mathematics (Cai, 2003; Rosenshine, Meister, & Chapman, 1996). 

Teacher beliefs about mathematics also has an impact in student beliefs. Teachers 

who believe mathematics to be an open and creative field where there are multiple 

approaches and strategies to solving problems tend to teach in ways that promote 

these beliefs in their students (Philipp, 2007). 

6. Does learning basic skills take a back seat when teaching through problem 

solving? 

When teaching through problem solving, the focus is more on conceptual 

understanding than on procedural fluency. There have been concerns that 

procedural skills and knowledge may be lost when the teaching focus in problem 

solving. Research has overwhelmingly shown that students using problem-solving 

approaches perform as well or better than students using traditional curricula in the 

area of computational skills and procedural knowledge. Further, students using 

problem-solving approaches perform better than students in traditional curricula on 

tests designed to measure conceptual understanding and problem solving (Cai et al., 
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2011; Fuson, Carroll, & Drueck, 2000). Overall, research indicates that teaching 

math with a focus on problem solving can significantly improve students' problem 

solving and conceptual understanding, as well as produce improvements in basic 

computational and other procedural skills. 

With this summary of the current state of research on problem solving, it is clear that 

students best learn how to solve problems by being immersed in problem-solving 

classrooms over the long term, solving cognitive demanding tasks. Classroom discourse 

and teacher beliefs also have positive impact on problem-solving performance. These 

are some questions that have been answered, but there are many more questions that 

have not yet been resolved through research. What does teaching through problem 

solving actually look like? What aspects of a classroom environment best contribute to 

learning problem-solving skills? 

In addition to this summary, there is a study by Salminen-Saari et al. (2021), that 

uses similar methods and concepts found in this dissertation. The authors in this study 

used video data and other technology to track student gazes while solving problems and 

identified occurrences of joint attention. They described joint attention as a social 

phenomenon where two or more individuals are aware that they are attending to 

something in common. Their research aim was to understand the nature of joint attention 

in mathematical problem solving and its effect on the collaborative problem-solving 

process. The study emphasized the significance of joint attention for collaborative 

learning and introduced the concept of joint representational attention to mathematical 

problem-solving research. Rather than relying solely on visual cues or physical gestures, 

joint representational attention emphasizes the cognitive aspect of collaboration. It 

involves collaborators actively engaging with the representation, coordinating their 

attention and interpretation, and using it as a shared cognitive tool to facilitate 

communication, reasoning, and problem-solving processes. It also emphasizes that 

interaction and collaboration do not necessarily require a concrete joint visual target. 

Successful interaction and initiation of joint attention can occur when collaborators share 

an understanding of the concept through representations. This study has some similarity 

to this dissertation in their primary use of video data, their attention to student gazes 

during the problem-solving process and their attention to a process-oriented perspective; 

however, this study had a focus on small group collaboration, rather than large group or 
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whole class, and they attended to one aspect in the problem-solving process – joint 

attention. In this dissertation, I focus more generally on the entire problem-solving 

process and how groups navigate a problem in collaboration within the group and 

outside the group. 

Currently, there is limited knowledge about the dynamics of students' collaborative 

interaction in mathematics classrooms, and only a few studies have approached 

collaboration from a process-oriented perspective (Seidouvy & Schindler, 2020). In the 

context of collaborative mathematical activities, a process-oriented perspective seeks to 

examine and analyze the interactions, strategies, reasoning, and decision-making 

processes that occur during collaborative problem solving. It emphasizes studying how 

individuals engage, communicate, and work together in order to gain insights to make 

progress in problem solving during collaboration. This perspective goes beyond simply 

examining the outcomes or results of collaboration and delves into the details of the 

collaborative process itself. Hansen (2022) focused on three key aspects of students' 

interactions: collaborative processes, mathematical reasoning, and exercising agency. 

Kuhn (2015) emphasizes the importance of understanding these key aspects to 

investigate conditions that foster productive collaboration. By studying these aspects of 

student interactions separately and observing their interplay patterns, Hansen gained a 

better understanding of the fundamental processes of collaboration. Existing research 

on collaboration (Child & Shaw, 2018; Kuhn, 2015) and reasoning (Lithner, 2017) argues 

that learning occurs in both instances and highlights the necessity of insights into the 

underlying processes that drive these learning opportunities. Hansen (2022) found that 

when students engage in a dynamic manner, assuming equal roles and demonstrating 

authority over mathematical ideas throughout the problem-solving process, they have 

the potential to construct a shared understanding by merging a diverse interplay of 

ideas. This dynamic structure of collaborative pairs exposes crucial elements in 

students' mathematical communication (Sidenvall, 2019), enabling a deeper 

comprehension of the underlying mechanisms that foster fruitful collaboration (Child & 

Shaw, 2018; Kuhn, 2015; Seidouvy & Schindler, 2020). These identified conditions 

involve both participants actively promoting the problem-solving process, grounding their 

reasoning in mathematical properties, and engaging in various collaborative processes – 

this was termed bi-directional interaction.  
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“Characteristics for the bi-directional interaction were students who engaged with 

similar roles; mutually attempting to understand each other’s ideas; making 

suggestions, listening, and negotiating mathematical properties; and mutually driving 

the problem-solving process forward” (Hansen, 2022, p. 822). 

Such a bidirectional interactional pattern nurtures the learning of mathematics through 

high-quality interactions (Pijls & Dekker, 2011; Varhol et al., 2020). 

The research on problem solving in mathematics education has shed light on various 

factors and approaches that influence effective problem solving. Studies have 

highlighted the importance of teaching through problem-solving activities rather than 

isolated strategies, as it promotes deeper conceptual understanding. Consistent and 

long-term exposure to problem-solving experiences has been identified as essential for 

developing proficient problem-solving skills. Cognitively demanding tasks have been 

found to foster growth in students' reasoning, communication, and conceptual 

understanding. The role of the teacher in orchestrating a problem-solving classroom 

involves facilitating discourse, encouraging student autonomy, and nurturing positive 

attitudes towards mathematics and problem solving. Research has shown that problem-

solving approaches can enhance both problem-solving skills and basic computational 

knowledge. However, many questions remain unanswered, such as what are the 

specific characteristics that make up a problem-solving classroom and what are the 

optimal classroom environment for fostering problem-solving skills. Furthermore, the last 

two studies highlight a current interest in a process-oriented perspective, emphasizing 

the need to understand the underlying mechanisms and collaborative processes that 

contribute to effective collaboration during problem solving. This dissertation will 

continue the emphasis on a process-oriented perspective, as it attends to what students 

do as they solve problems in collaborative spaces. And it will shed some light on 

optimizing classroom environments to support collaborative problem solving. 
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Chapter Three - Theory 

I will now present the theories that I will be referencing in the analysis for this 

dissertation. I have already introduced Schoenfeld’s theory of resources as the 

necessary pieces of knowledge that students bring into the problem-solving process. 

The theory guiding my research is Schoenfeld’s theory of resources mixed with Mason 

(1988) shifts of attention and Koichu’s (2018) shifts and choices model. Koichu 

describes all solutions as having a “situated solver” and I will be leveraging this idea to 

describe progress within a group. Complexity Theory (Davis & Simmt, 2003) allows me 

to observe the group work at different levels, as it describes emergence as rising from 

the interactions between the organism and the environment - the organism is not 

necessarily the individual learner. 

Mason and Davis (1988) began working on a theory called shifts of attention 

which attempted to explain the developing of awareness as the shift of perception, 

indeed, often several shifts. Among many examples provided, a student can shift from 

seeing an infinite sequence as an unending process to seeing it as a completed act, or a 

student can shift from being stuck on a problem to being aware of being stuck, and then 

free to be able to do something about it. They suggest that for students to learn, to 

master a technique and to develop an awareness, these require a shift of perception in 

the student. The shift is from a specific to a general understanding; and despite the 

action implied by using the word ‘shift,’ these shifts cannot be done or performed onto 

someone. An example of this type of shift is when a student begins to understand linear 

functions as an operation that can be repeated and produce a series of ordered pairs. A 

shift takes place when the student begins to see a function as a general operator on an 

input that can produce a two- or three-dimensional graph depicting this relationship. 

Shifts can only be occasioned, or you may attract it or focus it for students but shifts of 

attention cannot be forced. “The role of a teacher is to create conditions in which 

students experience a corresponding shift in the structure of their attention, in which they 

become aware of acts and facts of which they were previously unaware” (Mason 1998, 

p. 244). 

Shifts can come about in essentially four ways: investment, examplehood, 

resonance and grace. Although each of these have a unique character, they do not 
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necessarily occur in isolation; rather, several may be acting simultaneously before the 

shift occurs. Investment is when a shift occurs after someone esteemed or respected 

enters the room and enables you to see the problem from a fresh perspective. This 

attention outside produces an inner separation which is one form of a shift. 

Examplehood is when an outside experience spurs a noticing of a more meaningful net 

of connections and associations. Resonance is when something one hears or reads 

causes a sudden insight or change of viewpoint. And Grace is the final type of shift 

attributed to spontaneity, haphazard or chance, that might feel like a gift (Mason and 

Davis 1988). 

Mason asserts that learning is the transformation of attention. Learning has taken 

place when people shift their attention and see something in a different way than 

previously seen. “Learning necessarily involves shifts in the form as well as the focus of 

attention” (Mason, 2010, p. 24). It is interesting that in this framework on learning, there 

is a diminished role for direct action by the teacher. The whole point about learning is 

that what teachers traditionally pointed out or tried to shift attention in their students, now 

must be made available to the learner as a choice or an option that comes to mind 

(Mason, 2010, p. 26). In this way of thinking, Mason is suggesting that teachers provide 

environments for students where the potential to shift attention is high, so that a shift of 

attention is occasioned and a new concept or approach may be internalized (Mason 

2010, p. 42). In this way, shifts of attention is an appropriate framework to help 

understand how students make progress when individual resources are low or depleted 

in a problem-solving situation.  

“The transformation of attention has, we propose, qualities analogous to physical 

change of state, with the role of latent heat being taken partly by stimulation from the 

environment, and partly by the self, working on automatizing and integrating awareness 

(Gattegno, 1962; Maturana & Varela, 1971, as cited in Mason & Davis, 1988).” This 

quote is interesting in this review for a couple of reasons: Firstly, it demonstrates the 

beginnings of a theoretical explanation for the moment of illumination in learning. 

Secondly, it is referencing, perhaps for the first time within mathematics education, 

Maturana and Varela, who would later become well known for their work described in the 

book “The Tree of Knowledge” and for laying the groundwork for Enactivism. 
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Enactivism is a theory of cognition rooted in biology. Maturana and Varela (1987) 

developed a biology of cognition influenced by the 1940’s framework called cybernetics. 

The theory was developed to reflect how animals adapt to changing environments. An 

animal adapting to an environment can be thought of as learning at a very primal level. 

This evolution process describes the animal and the environment as changing together 

and changing continuously. An enactivist sees knowledge co-emerging from the 

interplay of the individual and the environment. An individual’s new knowledge changes 

the environment (or the perception of the environment) and then results in changing the 

knowledge. This process is continuously cycling. For enactivists, cognition is “the 

enactment of a world and a mind on the basis of a history of actions that a being in a 

world performs” (Maturana & Varela, 1992, p. 9). Knowing comes from interacting with 

the environment. When this happens, each individual brings their own unique 

experience to the situation, and this experience affects the individual’s perception of the 

environment which in turn affects the environment. Learning is not a sequence of steps, 

rather it is a continual interplay between observation and environment that results in the 

concept’s co-emergence.  “The enactivist claim, then is that cognition does not occur in 

minds or brains, but in the possibility for shared action” (Sumara & Davis, 1997, p. 415).  

In a mathematics classroom, students respond to a stimulus according to their 

own individual experiences (structures). The student activity as a result of the stimuli 

changes the stimuli and the cycle repeats. Learners interact through their actions, 

thoughts and emotions, which are shaped and influenced by the environment that is also 

changing constantly. Proulx (2013) describes mathematical strategies as a “real-time 

product of interaction, of the meeting, of the solver and his environment, directly and 

continually influenced by both” (p. 313). Instead of seeing learning as a destination or an 

object to know, enactivists see learner and object as co-evolving or co-emerging. The 

learner brings their own unique experience to a problem, and based on this experience, 

the learner interacts with the problem and changes their perception of the problem.  

Through enactivism, and later complexity theory (this will be described later), we 

are beginning to see a theoretical construct that explicates the generation of a key idea 

or moment of insight in the problem-solving process. These extra-logical processes that 

were critical to making progress in a problem were previously explained through 

patience, luck, and a-ha moments, are now being described as emergent events from a 
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collective. These instances of illumination, generation of ideas, are coming from the 

situated context of collaboration. Enactivism emphasizes the embodied and situated 

nature of cognition, which means that the environment and the agent's interactions with 

it play a significant role in shaping cognition. Within this framework, insight moments or 

problem-solving breakthroughs are not solely the result of individual cognitive processes 

but emerge from the interactions between the agent, the environment, and other agents. 

Complexity theory (discussed in more detail later) expands on this idea by providing a 

framework for understanding emergent phenomena in complex systems. In this view, 

problem solving is a complex system with many interacting elements, including the 

problem itself, the individual or group working on the problem, and the broader social 

and cultural context in which the problem exists. Emergent events, such as insight 

moments, arise from the interactions between these elements and cannot be reduced to 

a single cause or factor. 

Problem solving – In choice-affluent environments 
 In the early 21st century, problem solving continued to be a central focus in 

curriculums across the western world, in the classroom and in mathematics education. 

Researchers were focusing on how problem solving occurs and how to enhance 

problem solving in classroom settings. Schoenfeld (1985) showed that Pólya’s heuristics 

were not effective for novice problem solvers, and Mason, Burton, and Stacey (1982) 

were suggesting heuristics that rely on extra-logical processes such as illumination, 

insight and creativity in order to go beyond the resources that their repertoire of past 

experience afforded them. Where does this illumination and insight come from? Mason 

and Davis (1988) began to describe this phenomenon with their theory of shifts of 

attention which was developed around the same time as enactivism was taking hold. 

Complexity theory, then, builds on enactivism to describe how ideas can emerge from 

complex systems and Davis and Simmt (2003) integrate complexity theory into a 

mathematics classroom. 

Complexity theory bears some resemblance to enactivism, radical 

constructivism, situated learning, and some versions of social constructivism and has 

only developed over the last 45 years. Radical constructivism is a philosophical 

perspective that holds that knowledge is not discovered but constructed by individuals 

through their own experiences and interactions with the world (Steffe & Kieren, 1994). 
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Social constructivism is a learning theory that emphasizes the role of social interactions 

and cultural context in the construction of knowledge and understanding (Rytila, 2021). 

Like enactivism, complexity theory arose from cybernetics and deals with themes of 

emergence, interaction between object and environment and adaptation.  

Two key qualities are used to identify a complex system: adaptivity and 

emergence. Adaptivity is the change in the object and the change in the environment as 

the system interacts and evolves. Emergence is the self-organization of the individual 

agents into a collective with a clear purpose. Weaver (1948) described complexity by 

contrasting it with not-complex. Not-complex can be simple systems such as trajectories, 

orbits or billiard balls where actions and interactions can be characterized and even 

predicted in detail. As the number of variables increase, they become exponentially 

more difficult to predict and scientists move to new analytical methods such as 

probability and statistics to interpret, and the systems move from simple to disorganized 

complex. These two systems do not cover the range of possibility. It is when we 

recognize that objects within systems may not operate based on a set of known 

inputs/outputs (not deterministic), but rather their operations emerge in the interaction of 

the agents that we begin to think of it as a complex system. Perhaps it is this key quality 

of emergence that can describe the generation of a key idea or moment of inspiration in 

a problem-solving scenario. 

In terms of mathematics education, Davis & Simmt (2003, p. 138) suggest that 

mathematics classes are adaptive and self-organizing. Behaviours and norms of the 

group emerge from the collective. Complexity theory represents a move toward 

understanding the collective as a cognizing agent (as opposed to a collection of 

cognizing agents). It is this levelling up or self-organization that is a key quality in a 

complex system and may be present within a mathematics classroom. 

Davis & Simmt (2003, p. 145) outline five conditions of complexity as necessary 

but insufficient conditions for systems to arise and to learn:  

(a) Internal Diversity – enables novel actions and possibilities.  

(b) Redundancy – sameness among agents is “essential in triggering a transition 

from a collection of me’s to a collective of us.”  
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(c) Decentralized Control – locus of learning is not always the individual.  

(d) Organized randomness – emergent behaviours are about living within 

boundaries defined by rules, but also using that space to create. 

Liberating constraints draw a distinction between proscription and 

prescription in tasks.  

(e) Neighbour Interactions – there needs to be collaboration… not necessarily 

people to people but more for ideas to bump up against one another.  

These five conditions are stated as necessary but insufficient, because a complex 

system cannot be forced or coerced into existence. Its very nature requires a 

randomness and a freedom amongst the individual agents for self-organization or 

emergence to occur. Complexity theory provides a new perspective on problem solving 

that challenges traditional, more linear views of how problems are approached and 

solved. According to complexity theory, the environment of problem solving is a complex 

system with many interacting elements, including the problem itself, the individuals or 

groups working on the problem, and the broader social and cultural context in which the 

problem exists (Davis & Simmt, 2003). 

Complexity theory suggests that problem solving is not a linear process that can 

be solved by a single individual or group, but is instead a non-linear, iterative process 

that emerges from the interactions between the various elements of the problem. In this 

view, solutions to difficult problems are not predetermined or pre-existing but emerge 

from the interactions and feedback between the problem and the individuals or groups 

attempting to solve it. Complexity theory provides a lens to understand the processes in 

a complex classroom environment, but it is not yet a model for mathematical problem 

solving. 

Koichu (2018) presents a model of mathematical problem solving (building on 

Mason’s theory of shifts of attention (1989, 2008, 2010)) with the main idea being that in 

any problem-solving experience, the key solution idea results from a solvers’ shifts of 

attention between the solvers’ resources, peers and sources of knowledge. Koichu hints 

at characteristics of complexity theory with the idea that the solution process is made up 

of a series of choices that the problem solver negotiates. This is akin to organized 

randomness and neighbor interactions as described in Davis & Simmt (2003). Koichu’s 
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model is referred to as the Shifts and Choices Model (SCM) and relies on three 

premises: 

1. Even when a problem is solved in collaboration, it has a situated solver: an 
individual who invents and eventually shares its key solution idea. 

2. A key solution idea can be invented by a situational solver as a shift of attention 
in a sequence of his or her shifts of attention when coping with the problem. 

3. Generally speaking, a solver’s pathway of shifts of attention is stipulated by 
choices the solver is empowered to make and by enacting the following types of 
resources: 

a. Individual resources 
b. Interaction with peer solvers who do not know the solution and struggle in 

their own ways with the problem or attempt to solve it together, and 
c. Interaction with a source of knowledge about the solution or its parts, 

such as a textbook, an internet resource, a teacher, or a classmate who 
has already found the solution but is not yet disclosing it. (pp. 310-311) 

Point three above also resembles complexity theory in that it describes the control in the 

solution being in the hands of the student solver and not the teacher (decentralized 

control (Davis & Simmt, 2003)).  

Koichu (2018) decides to follow Schoenfeld’s (2013) recommendation to move 

from a framework for studying problem solving to a model that would describe a 

theoretical structure for problem solving. This theoretical structure, the shifts and choices 

model, would connect our understanding of how problem solving occurs with our 

understanding of how to improve problem solving in classrooms. Koichu sheds the 

assumption of problem-solving as an isolated activity, suggesting that problem solving 

may improve for learners if they are situated within environments that provide many 

opportunities for the solver to shift amongst. 

Despite stating that all problems are solved by a situated solver, Koichu 

introduces the possibility of the situated solver working with others as a result of shifts of 

attention and choices made in the solving process. In the center of this model, one sees 

the situated solver shifting attention among individual resources, resources from peers 

and resources from a solution source. These shifts are made in an environment of 

choices a problem solver is empowered to make: “Among endless conscious and 

unconscious choices that individuals face when solving problems … the model takes into 

account the following: a choice of a challenge to be dealt with, a choice of schemata for 

dealing with a challenge, a choice of mode of interaction, a choice of extent of 

collaboration, and a choice of an agent to learn from” (p. 309). Koichu presents a model 
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for problem solving that describes how solvers shift attention from individual heuristics, 

interaction with peers and interaction with a solution source when resources are 

insufficient. He concludes by suggesting solvers best make these shifts in environments 

that are affluent in choices, and he describes these as choice-affluent environments.  

In Koichu’s model that describes how problem solving occurs and how to 

enhance problem solving, one wonders if students solve problems by shifting their 

attention amongst a myriad of choices, what might happen if we create learning 

environments that are abundant in these choices? What do choice-affluent learning 

environments look like, and how does problem solving improve when these choices 

increase? 

Thinking classrooms as choice-affluent and complex environments 
 The Thinking Classroom framework is extensive, but the features that are 

relevant to this dissertation and provide a good conception of how these classrooms 

operate are: 

• visibly randomized groupings  

• vertical non-permanent surfaces  

• rich tasks  

• student autonomy 

In a Thinking Classroom, students are put into randomized groups daily. This type of 

group organization is intended to break down social and cultural barriers, improve the 

mobility of knowledge, decrease the reliance on the teacher, and improve student 

engagement and enthusiasm (Liljedahl, 2016). The randomization occurs at the 

beginning of each lesson and it is done in a way that students can see. In my classroom, 

I wait for some students to arrive, I project the seating plan from last day, and then I hit a 

shuffle button. After this, the seating plan is shuffled and all the students are arranged 

randomly with their new partners. With the randomization being visible, the students 

have a greater buy in with the process, and most students are more willing to work with 

whatever their group ends out being. If the randomization was not visible, students 

would tend to think that the groups were being organized based on ability or behaviour. 

When groups are organized based on ability or behaviour, students tend to work in ways 

that cannot be considered collaborative (Clarke & Xu, 2008; Esmonde, 2009). 
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These randomized groups of students conduct almost all of their collaborative 

work and discussion while standing together at whiteboards. Liljedahl found that by 

having students work on vertical whiteboards, students were more willing to take risks 

and engage more readily in the task and student work was visible to all, catalyzing the 

movement of knowledge (improving porosity) and providing the teacher with cues on 

which groups to attend to. To facilitate discussion, there is only one pen per group, and 

this pen is often circulated through the group members to change the dynamic of the 

collaboration.  

The third feature in a Thinking Classroom relevant to this discussion are the rich 

tasks. In a Thinking Classroom, all student activity revolves around rich tasks. Rich tasks 

are highly engaging, collaborative tasks that drive students to want to talk with each 

other as they try to solve them (Liljedahl, 2008). These tasks tend to be presented orally, 

and a series of two or three tasks will take students through the intended curriculum 

content for the lesson. In a Thinking Classroom, all of the mathematics that the students 

are exposed to and learn are presented through these rich tasks. As students are 

working through a task, the teacher is maneuvering through the room attending to 

groups to provide hints and extensions as needed. At the end of a task, the teacher 

leads a consolidating discussion usually using one of the group’s board work in order 

ensure the desired content is achieved. This consolidation is important, as it is when the 

teacher draws attention to the intended learning for the task. It is where ideas are 

clarified, vocabulary is introduced, and students are able to ask questions about key 

ideas. 

 A fourth underlying characteristic that should also be mentioned is that students 

are provided autonomy, both in their actions and their thoughts. Student autonomy is 

important in a Thinking Classroom, because “if one values a classroom with high 

porosity, a classroom where knowledge moves around the room by means of all 

members in the room, then one needs to give students freedom to move and think when 

and how they wish” (Pruner, 2016, p. 78).  

 As mentioned earlier, these are just four of many features that make a Thinking 

Classroom, but they are the ones most pertinent to this discussion. “A Thinking 

Classroom is a classroom that is not only conducive to thinking but also occasions 

thinking, a space that is inhabited by thinking individuals as well as individuals thinking 
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collectively, learning together and constructing knowledge and understanding through 

activity and discussion” (Liljedahl, 2016).  

A Thinking Classroom is also a choice-affluent environment. Koichu (2018) 

describes a choice-affluent environment as: 

an environment in which students can at different times choose the most 
appropriate (1) challenge to pursue, from solving a difficult problem to 
comprehending a worked-out example; (2) mathematical tools and schemata for 
dealing with the challenge; (3) extent of collaboration, from being actively 
involved in exploratory discourse with peers of their choice to being independent 
solvers; (4) a mode of interactions, that is, whether to talk, listen, or be 
temporarily disengaged from the collective discourse, as well as whether to be a 
proposer of an idea, a responder to the ideas by the others, or a silent observer; 
and (5) agent to learn from, that is, the opportunity choose whose and which 
ideas are worthwhile of their attention. (p. 320) 

From this description, I contend that through the classroom design and the pervasive 

undercurrent of student autonomy, Thinking Classrooms fulfill all five of Koichu’s 

descriptors. Koichu refers directly to Liljedahl’s Thinking Classroom as a candidate for a 

choice-affluent environment when he observed one group looking at another group’s 

board work in order to make some progress in a problem. “The students engaged 

themselves in interactions exactly when they needed them and not when the teacher 

decided for them that they needed them. In terms of the definition of a choice-affluent 

environment, the students in Peter Liljedahl’s class were empowered to make choices 

(2), (3), and (5) above” (Koichu 2018, p. 320). 

 Thinking classrooms are choice-affluent environments, but they are also complex 

spaces. A Thinking Classroom as a complex space can be justified through the five 

conditions of complexity described below (Davis & Sumara, 2014). 

• Internal Diversity: The daily randomizing of the groups produces diversity within 

the groups.  

• Redundancy: All students are at the same age and have similar prior 

mathematical experiences, they are members within random groups, they are all 

working at vertical spaces and all working towards completing a common task. 

This sameness helps to trigger the transition from individual learners to a 

learning community. 
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• Decentralized control: Thinking Classrooms are neither teacher-centered nor 

student-centered. Rather, learning is shared and emergent and control is 

distributed amongst the groups. Knowledge and ideas are not coming from the 

teacher alone; they ebb and flow through the classroom as progress is made or 

seen or heard from others. 

• Organized Randomness: The tasks in a Thinking Classroom may have structure 

or provide constraints (proscriptive), but the ways that groups progress through 

the tasks is completely random and unstructured. The natural randomness of 

human cognition thrives in a Thinking Classroom and is what allows creative 

ideas to develop, evolve and migrate throughout the room. 

• Neighbour Interactions: The very nature of the groups working side-by-side in a 

vertical and public medium facilitates the interactions within groups and among 

groups. 

Because a Thinking Classroom has all five of the conditions for complexity, it is a 

learning space that is ripe for the collective emergence of understanding or creativity 

within a mathematical solution. 

I finish this literature review and discussion on theory with Koichu’s model for 

problem solving in choice-affluent environments and Liljedahl’s Thinking Classroom 

framework as a complex space, and we see that these models are the current state of 

an evolution on the research in problem solving. Beginning with Pólya’s heuristics and 

Schoenfeld’s resources we saw the development of the research on problem solving 

with a static focus on the individual and problem solving by design. Mason shifted the 

research into the social and developed his theory on shifts of attention to help us 

understand how key ideas can emerge in the problem-solving process. While accepting 

that “there are probably no configuration or configurations of teaching decisions that 

would be optimal for enhancing problem solving for all” (Koichu, 2018), Koichu presents 

a model that both describes the problem-solving process and presents some ideas on 

how to design a problem-solving environment. This choice-affluent environment is a nice 

parallel for the environment that mathematicians engage in, in that mathematicians also 

have a multitude of resources to choose from – both social and technological. 
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Resources and Emergence 
 Putting these theories together led me to an expectation on how students and 

groups progressed in problem solving within the choice-affluent space of a Thinking 

Classroom. This expectation is a starting point in this dissertation, and I am placing it 

here to demonstrate my early understandings and how the theories are being 

implemented in this study. 

When a task is presented to the class, there is usually an eruption of discussion 

and activity as they move to their boards in their randomized groupings. This discussion 

signals the understanding stage of their problem solving. According to Schoenfeld’s 

resources framework, this is when learners are drawing on their personal repertoire of 

resources that might be applied or useful in this problem. Their attentions are shifting 

among their individual resources until a strategy or idea emerges (fig. 15). In this 

diagram, the individual, A, has a repertoire of experiences and knowledge represented 

by the shaded region. While thinking about the problem, A’s attention shifts through 

these resources until an idea or a strategy emerges. In a Thinking Classroom, this 

individual phase of understanding the problem and searching through individual 

resources is often quite short, because students start each problem within their group. 

So, it is expected that students will immediately begin dialogue with their partners to 

check to see if they are understanding the problem posed; students in Thinking 

Classrooms almost always begin their problem solving as a collaborative.  

FIGURE 15: INDIVIDUAL PROBLEM SOLVING 
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In collaborative problem solving, three students have the added benefit of shifting 

attentions between their shared resources and their partner’s resources (fig. 16). In this 

diagram, I present the original individual, A, in the upper left circle is now interacting with 

the resource spaces of two other individuals: B and C. The emergent idea or strategy is 

now coming out of the confluence, overlap, of the individual’s resource spaces. This is 

generally the reason for the noise and activity early after the initial problem posing.  

Students are checking with their partners to see if their understanding of the problem 

posed aligns with others in their group. This is the shifting of attentions between their 

own knowledge and experiences as well as those of their partners. As a group of three, 

the sample space of resources is generally tripled, and ideas are more likely to emerge 

without any outside influence such as a teacher or even neighbouring groups. In this 

scenario the entire group is now considered as the cognizing agent, and so the situated 

solver could be considered the entire group. Through the shifting of attention through 

their individual resources and through their partner’s resources, the group creates some 

possible strategies for beginning the problem-solving process. By attending to a specific 

feature in the problem, students share their perspective with others in their group and 

reach a mutual understanding of the problem to solve. This is typically how students 

move through the first stage, understanding the problem posed, in a Thinking 

Classroom, and if it is a legitimate non-routine rich task, meaning students do not have a 

specific process in their resources for a quick solution, students will undoubtedly become 

stuck.  

FIGURE 16: COLLABORATIVE PROBLEM SOLVING 
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Being stuck may be noticed in Thinking Classrooms when group activity and 

group conversation decreases dramatically. The whiteboard pen may be put down, their 

shoulders sink ever so slightly, conversation moves off-topic or tapers off and their 

gazes turn outward – the group has entered the Stuck-unstuck stage. In choice-affluent 

environments, the group’s attention can shift amongst an abundance of choices in the 

room including, but not limited to, conversations with other groups, observations of 

other’s board work, hearing conversations of others or interactions with the teacher (fig. 

17). In this diagram, the key idea or strategy is emerging not only from the shared 

resources of the group, but it is also coming from the interactions with other choices 

within the room, such as groups, boards, technology, the teacher, and more. This 

shifting of attentions is serving a couple of purposes. It is providing an opportunity for 

confirmation and an opportunity for illumination. When groups are stuck, it may be 

because of an error made or it might be that they just do not know how to make it to 

another step in the solution. By shifting their attention outward, observing other boards in 

the room and possibly conversing with neighbouring groups, their resource space has 

increased dramatically. The stuck-unstuck group is now able to see if their work aligns 

with other group’s work in the class, and their attention may shift onto a solution idea 

that allows them to become unstuck. In choice-affluent environments, the sample space 

of available resources is abundant, and this supports the autonomy and independence 

of the students as they start to make sense of the problem and it also supplies a 

continuous stream of resources for the students to attend to. This abundance of 

resources can stimulate any number of shifts or combinations of shifts from investment, 

examplehood, resonance or even grace. In this global scenario, the entire class is now 

considered as the cognizing agent, and so the situated solver could be considered to be 

the whole class.  
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The literature review was introduced with Devlin’s lament concerning students 

not experiencing mathematics (problem solving) in ways that mathematicians are 

engaging in the subject. Research on problem solving in mathematics education has 

reached a point that actually comes close to describing classroom problem-solving 

experiences that resemble real world problem solving by mathematicians, so what might 

these classrooms look like? A choice-affluent classroom is one where students “are able 

to choose the most appropriate (1) challenge to pursue, from solving a difficult problem 

to comprehending a worked-out example; (2) mathematical tools and schemata for 

dealing with the challenge; (3) extent of collaboration, from being actively involved in 

exploratory discourse with peers of their choice to being independent solvers; (4) a 

mode of interactions, that is, whether to talk, listen, or be temporarily disengaged from 

the collective discourse, as well as whether to be a proposer of an idea, a responder to 

the ideas by the others, or a silent observer; and (5) agent to learn from, that is, the 

opportunity to choose whose and which ideas are worthwhile of their attention” (Koichu, 

FIGURE 17: COLLABORATIVE PROBLEM SOLVING IN CHOICE-AFFLUENT ENVIRONMENTS 
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2018). What does this classroom look like and how does it support problem solving for 

the learners? Devlin suggests that the ways that students engage in mathematics need 

to reflect and imitate how mathematicians solve problems, and students need to develop 

a skillset that provides them the knowledge and flexibility to choose from a multitude of 

tools and resources that can help in solving problems. Koichu’s choice-affluent 

environment may be considered a response to this suggestion, but there are still many 

questions to answer with respect to creating these learning environments and studying 

their effects on problem solving in the learner. 

What does emergence look like in a Thinking Classroom? Emergence in any 

classroom is when intellectual movements arise spontaneously and may quickly exceed 

the possibilities of any of the individuals – the knowledge, idea or understanding is a 

property of the collective. This is not only present in a Thinking Classroom, but it is 

amplified. As described above, ideas or progress in a problem will quickly move from an 

individual to the whole class. Due to a Thinking Classroom satisfying all the conditions 

for complexity, it is a fertile space for observing emergence. Emergence in a 

mathematics classroom is a key solution strategy, a unique diagram or method, an A-Ha 

moment of inspiration or a new understanding of a concept; in a Thinking Classroom, 

these moments can all be observed, and their emergence can be mapped because of 

students working in the public space of vertical whiteboards. This leads to the research 

questions for this dissertation: 

1. What forms of interactions seem to support the movement of ideas and how 

do these interactions support problem solving? 

2. What form do neighbour interactions take and how do they align with the 

theory of complexity theory? 
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Chapter Four - Method and participants 

The data in this study come from a series of video recordings of students working 

through problems in my classroom at a high school in North Vancouver, British 

Columbia. The students are in a pre-calculus class in their senior year at high school. 

They are in the academic pathway of mathematics, meaning that most are planning on 

continuing their studies in a post-secondary institution in their following year.  

The setting 
 In 2013, I had been teaching high school mathematics for 19 years, and I 

believed that I had it all figured out. Throughout my years in the classroom, I had 

accumulated many skills and implemented many systems which I had believed created a 

very positive and effective learning environment. With hindsight now, I see that most of 

my practices were designed with a focus on control. I felt that in order to best teach my 

students, I needed to control all aspects of their learning. I needed to control how the 

mathematical content was delivered, how it was received, and everything in the 

environment that might affect either of these two intentions. Before I describe my current 

classroom where the data was collected, I think it is important to describe my early 

classroom and my journey of change. 

My old classroom 
I began teaching high school mathematics in 1994 in North Vancouver, and I 

remember those early days of my career always being interested in teaching better. This 

is probably not too different from most teachers, but I recall every August, before the 

start of school, thinking carefully about how to change my practice, change my 

assessment, and possibly change the sequence of topics. I was always interested (and I 

still am) in improving the experiences of my students, so they could better learn the 

mathematics and perhaps feel more positive about the subject itself. In the 90’s, I was 

also interested in technology, and this general interest merged into my professional 

career.  

As a teacher, I enjoyed experimenting with different technologies in the 

classroom. Computers and the internet were improving at such a fast rate, and I knew 

that these tools could be used to help students learn. In the late 90’s, I remember 

implementing online bulletin boards for my students to collaborate and get help from 
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their peers at home. I began producing digital note templates for students to complete 

while participating in my lessons. And I began curating a classroom website where 

students could access the course outline, the digital note packages, and find some web 

links to mathematically interesting web sites. I started to become known in the school 

community as the techie math teacher. 

In the 2000’s, I continued changing my practice with a goal of improving 

experiences for my students, and I continued to experiment with different technologies in 

the classroom. I went back to school and earned a diploma in teaching and technology 

from Simon Fraser University, and this two-year program also influenced my teaching. It 

was early in this decade that I received my first tablet computer. I remember being 

dazzled with this amazing technology – I could actually write on my digital note 

templates with my computer pen! With this computer, I began capturing screen 

recordings of my lessons and completed digital notes that I would post on my class 

website. My website had a calendar for the school year, and on each day, I would 

include links to the lesson recording and the pdf notes for students to view. Later in this 

decade, I convinced my school to purchase a class set of I-clickers. This was an 

amazing technology that was being used in a lot of post-secondary lecture halls. I-

clickers were small handheld remotes that allowed students to anonymously indicate 

answers to multiple choice questions. Throughout my lesson, I would ask questions like 

“Do you understand?” or “what do you think the answer is?”, and students would use the 

I-clickers to respond. I would instantly see the results of the poll on a small device at my 

teacher pedestal. I was dazzled with how I-clickers improved class participation and 

provided me with immediate assessment information. 

By the end of 2010, I was becoming quite confident in my teaching practices. I 

had over 15 years of experience, continuously evolving my practise to a point where I 

believed that I had it all figured out. I razzled and dazzled my students with high tech, 

and I likely misinterpreted this dazzle as learning and engagement. At this time, I began 

working with textbook companies on resource development, I began working with the 

Ministry of Education on provincial exam development, and I began leading professional 

workshops with teachers. I was an experienced mathematics teacher, and I had a lot to 

share. 
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 For many years, I based my teaching approach on my own experiences as a 

student. My students typically sat in desks arranged in rows according to a seating plan 

that I carefully arranged at the beginning of the school year. I would start by organizing 

the seating alphabetically by last name, and then make adjustments over the first few 

weeks until I felt it was just right. This often meant placing "trouble-making" students 

close to me or surrounded by well-behaved students to create a calm and peaceful 

classroom environment. Once the seating plan was set, it rarely changed throughout the 

rest of the school year. 

I also had various procedures in place to prevent potential issues, such as 

locking my door a few moments after the bell rang to discourage tardy students. Late 

students had to wait outside my door until I deemed it appropriate to allow them in, with 

the idea being that missing my lesson was a natural consequence for being late and 

would encourage them to arrive on time in the future. To promote student engagement, I 

implemented a reward system where students could earn stamps for participating in 

class or answering challenging questions. After collecting 10 stamps, they would receive 

a bonus mark. While this system was effective at rewarding students who were already 

participating in class, it did not necessarily motivate quieter or weaker students. I placed 

a great emphasis on taking thorough notes and maintaining a clean and organized 

notebook. I often reminded my students that if something was important enough for me 

to write on the overhead projector, it should also be recorded in their notebooks. I would 

also periodically check their notebooks and require students with incomplete or blank 

notes to stay after class or during lunch to copy the notes from the overhead. 

While my teaching style may have seemed strict, I actually enjoyed explaining 

math concepts in an engaging and entertaining way and was deeply passionate about 

the subject. I genuinely wanted all of my students to succeed and believed that the 

measures I took, such as enforcing a structured classroom environment and checking 

homework, were all part of that effort. In fact, I marked homework partially as a way to 

motivate students to complete it and also to gather data on their work habits, which I 

needed to report on in student progress reports. At my school, we were required to 

include both a percentage mark and a work habit mark in these reports, and I preferred 

to base the work habit mark on objective measures like homework completion. 
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I followed a common teaching approach where I would explain a new math topic, 

demonstrate how to solve various problems, and then give students a chance to try 

similar problems on their own. This is known as the "now you try one" approach 

(Liljedahl & Allan, 2013a, 2013b). While I would walk around the classroom to help 

students during this time, I mostly ended up managing behaviour, reminding students to 

open their notebooks or get back on task, or showing individual students how to solve 

the problems. After a few minutes, I would ask for volunteers to come to the front of the 

class and demonstrate their work on the board, and the same group of students would 

typically volunteer and earn reward stamps. Once the "now you try one" portion of the 

lesson was finished, I would give the students their homework and expect them to work 

quietly at their desks until the end of class. 

I also gave biweekly quizzes and around ten chapter tests per year, which I kept 

in a filing cabinet to reuse and standardize my assessments. Students could view their 

tests during non-class hours but were not allowed to take them home. I did experiment 

with allowing students to rewrite tests or demonstrate their understanding of basic 

concepts through what I called an "I-test," where "I" stood for "incomplete" and passing 

the test meant passing that part of the course. However, this was the extent of my 

innovative teaching practices. I was a passionate and controlling mathematics teacher, 

and I believed that as long as students listened carefully and thought the way I did, they 

would do well in my class. Despite my efforts to be more engaging and provide 

incentives to learn, I often felt frustrated by the lack of attentiveness, engagement, and 

motivation among many of my students. It seemed that only my honours students or top 

performers were truly invested in learning math. 

Motivation to change 
In 2011, I became an executive member of the British Columbia Association of 

Mathematics Teachers (BCAMT), a specialist organization for math teachers in BC. As 

part of this role, I coordinated registration for their teacher conferences, a position I still 

hold. In 2013, while coordinating registration at one of our annual New Teachers 

Conferences, I happened to be in the same room as the keynote speaker, Dr. Peter 

Liljedahl from Simon Fraser University. As I listened to his presentation, I realized that 

everything he was discussing related directly to my own experiences in the classroom. 
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Liljedahl presented on research he had conducted with a graduate student, 

Darien Allan, on "studenting," or everything that students do in a classroom, both good 

and bad. When student behaviour supports learning, it is considered good, but when it 

does not, he referred to it as "gaming," or undesirable behaviour. He showed that it was 

common for students to engage in gaming in a classroom, and one slide in particular 

caught my attention (fig. 18). It depicted observations from a classroom using the "now 

you try one" instructional approach, and I could easily see my own students fitting into 

the categories described. 

 

FIGURE 18  A SLIDE FROM DR. LILJEDAHL'S PRESENTATION (USED WITH PERMISSION) 

According to the slide, about 12% of students were "stalling," rummaging through 

their backpacks or asking to leave the room for a break. Another 9% were "slackers," 

slouching in their desks and not engaging with the material. There were also "fakers," 

who pretended to participate in class activities but were really just waiting for the correct 

solution to be shown, representing about 6% of the class. The most striking category 

was the "mimickers," who made up 55% of the students observed and likely a similar 

proportion of my own students. These were the students who copied the math line by 
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line from the teacher's demonstration, substituting numbers as needed, without actually 

thinking about the underlying mathematics. Liljedahl argued that these mimickers were 

not thinking critically and therefore not learning. 

Granted, this dataset came from a single class, but the numbers resonated with 

my own experiences of teaching in this way. As I listened to Liljedahl speak, I too 

recognized that about 55% of my class were mimicking and about 25% of my classes 

were faking, stalling and slacking. This realization that about 80% of my students were 

not engaging in meaningful learning during my "now you try one" lessons was a 

profound moment for me. I had been teaching for 19 years and had spent that time 

building classroom procedures and refining my instruction, but I still had a significant 

proportion of students who were not learning. This led me to question my own teaching 

practices and consider alternative approaches. 

Fortunately, Liljedahl's keynote also focused on strategies for creating a 

classroom culture that promotes thinking, engagement, and problem solving, rather than 

gaming. He suggested making three changes to our teaching practices to begin this 

transformation: 

1. Use visibly random groups (VRG) every day. Group work is a well-known 

strategy that can improve student collaboration, communication, and 

learning, but in most groups, students quickly settle into roles. By 

randomizing groups daily, students are constantly required to reconsider their 

roles and are given opportunities to take on different responsibilities. By 

making this process visible, students trust that it is truly random and are more 

willing to work through challenges, knowing that the group will change the 

next day. 

2. Have students do all of their work in their groups at vertical non-permanent 

surfaces (VNPS). Liljedahl found that when students work on VNPS, such as 

whiteboards or chalkboards, engagement increases, student work becomes 

visible (which is helpful for both teachers and students), and students are 

more willing to take risks with their thinking. This last point may seem 

counterintuitive, but he argued that it is the "non-permanence" of working at 

the whiteboards that increases students' willingness to take risks. Since 
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mistakes can be easily erased, students are less afraid to engage with 

problems. 

3. Stop making students take notes. This is a natural consequence of 

implementing the first two strategies, but it was a major change for me. 

Liljedahl found that for most students, the act of taking notes serves as a 

proxy for learning, rather than actually promoting learning. Most students 

cannot keep up with note-taking, cannot process the discussion in class while 

taking notes, and never use their notes for learning later in the course. 

After implementing these practises in 2013, I noticed immediate improvement in 

student’s actions, behaviours, engagement and affect. Many students were excited to be 

doing their own mathematics, they persisted in solving problems, and they even seemed 

to enjoy the process: they would laugh more and celebrate their victories with others. 

Admittedly, this was not perfect. There were still students who were slacking and 

disengaged, but there was an enormous improvement from the old model. The whole 

environment was such a radical change from what I was used to as a teacher, that I was 

determined to never go back to my old practices – I was determined to continue my 

journey with Thinking Classrooms. 

In 2013, I enrolled in a master's program in mathematics education at Simon 

Fraser University. I have fond memories of this experience, as I was able to get into 

deep discussions regarding pedagogy and the nature of learning with fellow teachers in 

my cohort every week. This was a two-year adventure in reading, researching and 

writing about mathematics education; at the end of which, I began work on my Master’s 

thesis that was titled, “Observations in a Thinking Classroom” (Pruner, 2016). Through 

this thesis project, I analysed hours of classroom video from my own classroom, and I 

made some observations of what I noticed from this fly on a wall perspective. Results of 

the thesis indicated that high mobility of students and ideas, autonomous behaviour in 

students, and a significant amount of class time spent on tasks were some of the 

observations that were noticed in a Thinking Classroom. I defended my thesis and 

completed my Masters in the summer of 2016, and my journey with Thinking 

Classrooms has continued to evolve. 
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My Classroom today 
 Today, my classroom does not look or feel anything like it did pre-2013. Instead 

of desks, my room has 10 tall round bistro-styled tables, each with 3 stools to 

accommodate my typical 30-student classroom (fig. 19). On three of my four walls, I 

have large sections of whiteboard, and on my fourth wall, I have a window that is used 

as a student writing space and a projector screen for my computer. 

 

FIGURE 19  MY NEW CLASSROOM TABLES 

At the beginning of class, students drop their bags and backpacks off in the 

corner of the room and wait for the seating plan to be randomized. I project their seating 

plan on the screen and hit “shuffle” to randomize their seating, and then they make their 

way to their designated table. After this, I circulate the room, greet my students and 

distribute one whiteboard pen to each of the 10 groups. I begin most of my lessons with 

a fun game, puzzle or non-content based math task. I like to start classes like this 

because it is a nice way for students to begin working with their new partners, and these 

puzzles and games can really set the tone for future problem-solving tasks. As student 

regularly engage in math puzzles and games, their beliefs about mathematics slowly 

change over time, and they develop persistence, curiosity and different problem-solving 

strategies that can come in handy down the road. 

 After the opening task, I design the learning goal around two to three open tasks 

for the students to work on in sequence. Sometimes, we consolidate after each task, and 
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other times, we consolidate after all of the tasks are complete. Consolidation usually has 

me gathering the class around some of the student’s work and discussing the steps and 

ideas that are apparent on the boards. This is the stage that most closely resembles 

teaching from a traditional standpoint. It is in this consolidation space where I am keenly 

aware of my learning goal for the day, and I am orchestrating the discourse so that the 

learning goal emerges from the discussion: pointing to strategies, discussing new 

vocabulary and highlighting key ideas. At the end of almost every lesson, I arrange for 

some sort of independent self-check for the students. This can be an exit ticket that I 

collect and comment on, or it can be something less formal for each of my students to 

reflect on their own learning for the day. 

Data gathering 
I was interested in the interactions that support the movement of ideas in a 

Thinking Classroom. After years of noticing a seemingly autonomous action of these 

extra-logical moments arising in various and multiple locations within a classroom, I was 

interested in capturing the details of a typical classroom engaged in a typical 

mathematics task. During these lessons, I found that as a teacher, I was preoccupied 

with my usual teaching duties of classroom management and maintaining the flow of the 

tasks, and this made me somewhat blind to the minutiae of detailed actions that my 

students were engaged in. I decided that capturing video recordings of a lesson might 

provide me with the opportunity to study these detailed actions of my students. 

After my experience of capturing video data for my master’s thesis, I learned a 

few things. I learned that video quality was very important. Often, in analysing that older 

thesis data video, I was unable to see what students were writing due to the lack of 

resolution in the video. I also learned that it would be really valuable to capture student’s 

conversation. In the old data, I did not have quality audio from the recording, so I was 

not able to actually hear the details of the student conversations. Lastly, I wished I had 

two different camera perspectives. Many times, when I was analysing that older data, I 

would feel that I just missed a student action such as a glance or a gesture, and I wished 

that I had another video perspective to add clarity to my observation.  

In order to collect data in this classroom, two video cameras were placed; I chose 

two cameras to address the issues noticed from my previous experience of video data 

collection. The first camera was hanging from the ceiling in the middle of the room and 
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pointed towards one set of whiteboards, capturing the work of three different groups. 

The second camera was placed on the actual whiteboard and pointing down towards 

one of the three groups.  

The purpose of the first camera was to capture a global perspective of the three 

groups working. Through this lens, one can see how the individuals are moving and 

gesturing within their groups, what the students are writing on their whiteboards, and it 

also captured the direction of their gazes. The latter feature proved valuable in observing 

how students were looking at other groups or other boards. 

The purpose of the second camera was for capturing audio. In previous 1-

camera experiments, the data was missing most of the student dialogue. This missing 

dialogue made it difficult to understand the solution process. Adding this second camera 

on the whiteboard, I am now able to include most of the student dialogue in the data. 

Because it is just one camera capturing the dialogue of three groups, there are some 

instances where the dialogue in not discernible. This was exacerbated by the students 

wearing masks. The data was collected in the fall of 2019 when covid-19 was going 

strong, classes were in session, but covid protocols (like wearing masks) were activated. 

Unfortunately, there were a couple of students in the data who were ‘quiet talkers,’ and 

their voices were further muffled by their masks. For these students, I was not able to 

record their dialogue and simply wrote “unintelligible” in the data table. 

These two video cameras were turned on at the beginning of class, and they 

were left running for the duration of the class. The classes were 2 hours and 20 minutes 

in duration, so usually the cameras turned off on their own when the batteries were 

depleted. The GoPro camera saved each video file as a 4GB MPEG movie that was 17 

minutes and 42 seconds in length. At the end of each day, the video files were labelled 

with the period, the day and the activity that was mostly captured in that time period. 

After a week of recording, the files were viewed and reviewed, and a few optimal 

candidates were flagged. To become an optimal candidate, I was looking for videos that 

showed lots of examples of resource gathering, videos that contained intra-group 

collaboration, and videos that had high quality audio for transcription purposes. Because 

of the nature of a Thinking Classroom, these qualities were present in almost all of the 

videos, but some were better than others, and these were the videos that were put aside 

for more detailed analysis. 
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Data 

The videos that I ended up choosing for this analysis consist of two different 

stories around two different tasks. In each story, there were three groups working side-

by-side, and each group contributed a unique perspective for the analysis. Once this 

video was determined to be the focus, I then used video editing software to combine the 

two camera recordings into one. The video from the central camera became the main 

video, so one can see the writing on the whiteboard and the glances and gestures from 

each participant. Embedded in this video was a smaller video (picture-in-picture) 

capturing the closer up work of a singular group. This second inserted video was the one 

providing the best quality audio, so this became the audio for the combined video. I was 

careful to synchronize the timing of the two videos before the final video was produced. 

In the end, I produced two 17-minute videos capturing the work of three groups as they 

progressed through two different problem-solving tasks – two stories. From each of 

these videos, gaze-dialogue transcripts were made. 

Gaze-dialogue transcripts were first developed by Liljedahl & Andrà (2014) who 

added gaze arrows to interactive flowchart transcription (Ryve, 2006; Sfard & Kieran, 

2001) as a way of documenting what and who students are attending to. A gaze-

dialogue was recorded for each of the three groups recorded. The transcript is recorded 

in six columns (fig. 6). The first column contains the time interval. This time interval is 

almost always 10 seconds; the reasoning for this interval length is described below. 

Sometimes, there are greater intervals of inactivity, so the time intervals were stretched 

for these circumstances. The second column, titled outside, serves two purposes. This 

column captures the dialogue from any person outside the group who is interacting with 

the group. This column is also a place holder for gaze arrows. If a person within the 

group is gazing outside of their group, the gaze arrow points to this column. The middle 

three columns represent the dialogue for the three group members, and they are 

labelled with letters corresponding to the individual in the group. An asterisk is used in 

these columns to indicate who is currently holding the whiteboard pen (there is only one 

pen per group). Solid arrows (→) are used to indicate a directed conversation among 

participants. A solid arrow with a point on one end (→) represents a student speaking to 

another student and a solid arrow with points on both ends (↔) shows when both 

students are speaking to each other. A double asterisks (**) is used in the table to 

indicate who is in possession of the whiteboard pen. In some of the transcripts, a 
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seventh column was added to include a small picture of the board work at the specified 

time interval. This was found to be necessary at times when the notes were not able to 

give enough detail of the actual happenings in the interval.  

 

FIGURE 20  SAMPLE GAZE-DIALOGUE TRANSCRIPT 

For example (fig. 20), one can see that student C is speaking directly to students 

A and B. Gazes are represented by dashed arrows (⤏) to encode every time a 

participant is attending to something outside of their group. So, for example, in figure 6, 

students A, B and C are all gazing to whiteboards outside of their group at different 

times.  

To capture shifts in attention the transcript breaks each recording into equal 

intervals. After some experimentation with multiple transcriptions across a variety of 

interval lengths, 10 seconds was chosen for the interval length. I found that when the 

interval was shorter, there were many intervals with little to no observable dialogue or 

shifts of attention.  When the interval was longer, I found that too much transpired within 

the interval to effectively document within the gaze-dialogue transcript.  

Within these intervals, I interpreted groups that were working as having adequate 

resources (Schoenfeld, 1985) in the form of knowledge and/or repertoire of past 

experiences. If a group showed some sort of productive activity (ie. gesturing, writing, or 

dialoguing with another student), I would consider this working. If a group was not 
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working within an interval, I interpreted that group as having depleted their resources. I 

relate working to having resources, because, if students are working, they are likely 

making some progress (right or wrong) towards a solution. In this way, I assumed that 

individuals who were actively participating within a group that was working had access to 

the collective resources of that group. Likewise, I assumed that individuals that were not 

actively participating both lacked the individual resources to solve the problem and did 

not have access to the collective resources of the group. 

The video clips being analysed for this dissertation captures three groups of 

students as they progress through the tasks described below. I was interested in how 

ideas moved between groups, and the videos are mostly clear in capturing how the 

individuals in the group gesture, who in each group is writing, where their individual 

attentions are drawn to, and what is said amongst the participants. 

Data Analysis 
At first sight, one might not see anything too special in how these groups are 

working towards their solution. However, through analysis of where students are 

attending and how they gesture, one can begin to see how ideas are originated, 

dispelled, or confirmed as progress towards a solution continues. One can also see how 

the groups increase their attention outside of each group later in the solving process as 

a means to affirm their current work or to aid in their progress. Gaze-dialogue transcripts 

were chosen for the analysis because they provide a document of where students shift 

their attention as they progress through a solution. At every 10-second interval, one can 

see whether a solution is progressing due to internal resources or due to external 

resources. The external resources are apparent when a student is in dialogue with 

another student, using their smart phones, or gazing at another board’s work. 

Complexity theory describes neighbour interactions as one of the conditions for 

emergence. In a classroom, neighbour interactions can take the literal form of dialogue, 

gazing, and eavesdropping, and they can take a more figurative form of an external idea 

bumping up against an internal previous memory, experience, or prior knowledge. Gaze-

dialogue transcripts provide a useful tool for documenting the literal form of these 

interactions. 
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The setting for each story 
This classroom has 30 students and is operated under the Thinking Classroom 

framework. As described earlier, when entering class, students deposit their bags in the 

corner of the room and wait for the teacher to randomly generate the 3-person groups 

and the seating plan. After seeing their group and their corresponding table, the students 

move to their assigned location and begin a small conversation with their new partners. 

In the beginning of the year, the teacher would provide ice-breaker type questions to 

encourage the groups to get to know each other, but at this point, later in the year, the 

teacher just reminds students to take some time to say ‘hi’ and introduce themselves if 

necessary. 

 After this short introduction time, I begin the class by providing a series of open 

tasks for the students to work on. An open task is one that is proscriptive in nature. 

Compared to prescriptive tasks that instruct students to do one thing and then another, a 

proscriptive task begins with one goal or question, and students are free to choose their 

own strategies and pathways towards a solution. The tasks are designed to be open, so 

students will have choice in how to navigate the problem, and with a purpose, so that a 

specific learning goal is attained. Students are given 20 – 30 minutes to work on each 

task. After this time, the teacher orchestrates a consolidation: the whole class gathers 

around student work and discusses the solution. This discussion is often directed by the 

teacher, as the teacher attempts to reify the main learning goal of each task. In this 

consolidation phase, the teacher is ‘teaching’ by introducing vocabulary, correcting 

steps, or answering student’s questions regarding the work. After the consolidation 

phase, students are given some time to take notes of their learning, and then another 

task is introduced – the process is repeated. 

The task for lesson 1 
The task that they were asked to work on was the following: 

 

Write the following function in the form                                   and then sketch the 

graph. 
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FIGURE 21  TASK FOR LESSON 1 

Students in this class had experience with rational functions that are presented in this 

form:  

Most students knew the general shape of the base function, y = 1/x, and they 

understood how the parameters, a, b and k, transform the original graph. In the previous 

lesson, the students were tasked with writing rational functions as a single fraction of 

polynomials. They did this by finding and creating a common denominator on the 

constant term, b, and then combining the two numerators. In other words, the students 

had experience with converting the functions in this way: 

 

 

They did not, however, have any experience in my classroom of converting the functions 

in the other direction: 

 

The algebraic steps in this conversion are quite challenging; they generally involve one 

of two different methods: 

1. creating a factor of (x – 2) in the numerator by subtracting 8 from the 4x and then 

compensating for that subtraction by adding 8.  

2. using polynomial division to re-write the rational function as a quotient (b) and 

remainder (a). 

As this problem was not previously encountered by students in this class, it is a prime 

candidate for studying how students problem-solve in choice-affluent environments. 

      

     

FIGURE 22 STUDENT’S PREVIOUS UNDERSTANDING 

FIGURE 23 GOAL FOR THIS TASK 
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The task for lesson 2 
The task that they were asked to work on was the following: 

Write as a single logarithmic expression and then state restrictions on x. 

 

FIGURE 24  TASK FOR LESSON 2 

Students in this class had experience with an introductory lesson on the properties of 

logarithms, where each property was considered and reasoned in isolation: 

 

FIGURE 25  STUDENT’S PREVIOUS WORK WITH LOGARITHMS 

There are several features to this task that made it a worthy candidate for problem 

solving in this lesson. First, students had not yet simplified a logarithmic expression that 

required multiple applications of the logarithm properties. Next, the final fractional 

expression in the first expression is challenging as many students were not familiar with 

this being similar to the final logarithm property on the list above. And lastly, students 

have not yet been asked to state restrictions on logarithmic expressions. They were 

aware of the domain for the base logarithm function, y = log x, but they have not yet 

considered how this might apply to larger more complicated logarithmic expressions. As 

this problem was not previously encountered by students in this class, it is also prime 

candidate for studying how students problem-solve in choice-affluent environments. 
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Chapter Five - Results and Analysis 

Each of the two lessons have three groups working on the above stated tasks; 

therefore, there are three different groups to analyse for each of the two lessons. Each 

group contributes something different to the overall picture of how the problems were 

solved. In this analysis, I will focus on each lesson and the corresponding three groups 

by providing an overarching commentary on the entire video segment. Then, I will go 

into each of the three group perspectives. Each perspective will begin with the gaze-

dialogue transcript and a written description of what was observed. After each 

description will be an analysis describing the results that I am beginning to notice. Then I 

will finish with a more detailed summary analysis on what is being revealed from the 

complete data from all three groups. 

After viewing many of the classroom videos, I began to notice that there were 

details that were occurring at different levels of student activity. I was noticing that I 

could attend to the details of what the individual students were doing (the individual 

level), I could attend to the details of what the group on a whole was doing (the group 

level), and I could also attend to a global level – how the class (the three groups 

together) were making progress on the task. By discussing the results at these varying 

levels, I hope to get a better understanding on how the problem-solving process and 

student understanding is related to the level at which different activities are observed. 

In the analysis of the video, I will be drawing on Koichu’s work (Koichu, 2018) 

and attending to who the situated solver is at various times during the problem-solving 

process. I will be detailing my observations on how and where the situated solver shifts 

their attention (Mason, 1988) both literally, by attending to different spaces or people, 

and figuratively, by making a sudden change in their thinking or making some progress 

in the task. Schoenfeld’s concept of resources (Schoenfeld, 1985) and its abundance 

will be leveraged as the fuel for students making progress. Conversely, the scarcity of 

resources is used as a reason for pausing in an activity and possibly being stuck. Taken 

together, I will be analysing the situated solver’s progress in a problem as they shift their 

attention amongst locations and people in order to access resources both internally and 

externally to make progress on a problem. In any given problem, the situated solver will 

change from person to person within a collaborative, but the solver may also change 
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level from an individual to a group or to a class. If a solution is being advanced by an 

individual, then this individual is working independently through a problem using internal 

or external resources. If the individual is in cooperation with a partner (or two partners), 

then the situated solver has moved up a level to a group. If the group is working in 

cooperation with another group, then the situated solver has moved up another level to 

the class.  

It should also be noted that Davis & Simmt’s (2003) conditions for complexity are 

all met in this classroom. There is internal diversity, because the students act as 

individuals with their own variety of experiences and personal resources. There is 

redundancy due to the students having commonality. They are similar in age, they have 

similar school back grounds, and they come from similar communities of learners. There 

is no direct teacher control over how students navigate their tasks. Students are 

provided freedom to explore each task and generate a strategy of their choosing – this is 

decentralized control. There is organized randomness, because students are placed into 

random groups so that they have different experiences with different students in every 

class. And lastly there are literally neighbour interactions due to the students standing 

side-by-side at the whiteboards, but a figurative neighbour interaction also occurs in the 

sense that ideas on boards are also bumping into one another. 

 

 

FIGURE 26  DIAGRAM OF THE THREE GROUPS AND CAMERA POSITIONS 
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I have included this diagram (fig. 26) to help the reader understand how these 

groups are generally positioned while working on the task in each lesson and to see how 

the individual student letters correspond to their positions within a group and at the 

whiteboard. In this diagram, camera 1 is the camera positioned pointing down at the 

whiteboard; it is this camera that is primarily responsible for capturing the dialogue within 

the groups, but it also plays a secondary role in capturing more detail in what group 2 

writes on the board and where the students in all groups are gazing. Camera 2 is the 

camera positioned in the centre of the room; it is this camera that is responsible for 

capturing the global interactions of all three groups (gazes, gestures, and board work). 

 

Lesson 1 
In this first lesson, we see group 1 make most of their progress in the task using 

their collective resources. The situated solver changes within the group, but most of the 

progress is made because of the resource exchange between two group members. It is 

interesting to see what happens in this group after they solve the task. 

 

FIGURE 27  ACTUAL VIDEO IMAGE OF GROUPS FROM THE TWO CAMERAS 

The second group (containing only two students) maintains only one situated 

solver for the duration of the lesson. This person works on the task mostly on her own, 

but she presents the result incorrectly. Over the course of the video segment, she is 
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observed looking outside of her group and eventually noticing the error in her work from 

these outside observations.  

The third group also has a single situated solver for most of the task, but this 

individual is stuck for much of the beginning of the video. She is seen looking outside for 

ideas for a large amount of time before inspiration finally hits and progress is made. 

Each of these groups express different trajectories of collaborative problem solving 

within choice-affluent spaces, and so each group will be analysed and discussed 

separately. In each analysis, the group’s actions will be summarized, supported by the 

gaze-dialogue transcript and analysed to bring to the forefront the details of the problem-

solving process. 

Before describing each group’s progress in more detail, I have restated the task 

below (fig. 25) for reference. 

 

 

Write the following function in the form                                   and then sketch the 

graph. 

 

FIGURE 28   TASK FOR LESSON 1 

Group 1: 
In this group’s video, Group 1 appears to rely heavily on their shared resources 

to accomplish the task at hand. Although the situated solver varies among the group, the 

majority of the advancement is due to the exchange of resources between two 

members. It is intriguing to observe the group's behaviour after successfully completing 

the task. 

This group started out with student B having a strong idea for the solution. “I 

know how to do this… I know” was said multiple times by student B, and he tried a few 

attempts with the pen. The attempts were actually going in the right direction, but student 

A was not satisfied with his reasoning (fig. 29, 3:10). She grabbed the pen during a 
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pause in the action and began a different approach. She first erased student B’s work, 

and then started a solution that was almost a reverse engineering strategy. Eventually 

solving the problem (fig. 30, 5:30). Student B went to his table to grab his phone. He 

checked the solution in Desmos and the group was all satisfied that they had the correct 

solution. Student A then went and recombined the two fractional terms to verify the 

solution algebraically. Satisfied with this, she then labels this verification as a “check” on 

the whiteboard (fig. 31, 7:30), and the group appeared to be collectively satisfied in their 

work. Student A, looking around the room, noticed another student from across the room 

who was looking at their correct solution. A conversation began, and student A went 

over to the outsider’s group to assist with the other group’s work. Student B also left his 

board to assist another group in the room. Student C was left still puzzling over his 

groups work. After the teacher came and had a short discussion with this group, again 

verifying their work, Student A begins a conversation with Student C to explain the 

reasoning behind the solution. After this, student C is now nodding frequently. 
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FIGURE 29   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 1 (1 OF 3) 
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FIGURE 30   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 1 (2 OF 3) 
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FIGURE 31   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 1 (3 OF 3)  
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Analysis: 

This perspective shows a group that is working well within their group – activity is 

high and there is lots of dialogue between student A and B (4:00 – 5:40). The group’s 

internal resources appear to be sufficient, as there is no attention to anything outside of 

the group. The situated solver shifts from student A to B, but overall, it is student A. She 

relies on the affirmation of her partners. They use technology to confirm their solution, 

and then algebra to doubly confirm. When finished, students A and B both go into other 

groups to share their understandings (7:50 – 8:20). Eventually student A comes back 

and supports student C in his understanding of the solution. 

In the data, I noticed many different pauses in the action of the problem-solving 

process. The pauses may signify a moment of being stuck, and it is interesting how the 

student/group transition from being stuck to being un-stuck.  

The first pause occurs in the 2:10 – 2:20 segment when student B appears to be 

struggling to remember a pathway for this solution. Just as he appears to have an 

insight, student A reaches for the pen in a moment of impatience, makes a few markings 

of her own, pauses for a moment, and then student B grabs the pen again. In a short 90 

seconds, the pen has switched hands three times. This shows that the situated solver is 

not an individual, but rather it is the group. Resources are being accessed rapidly 

between student A and student B, but it is not one individual who is making progress. 

Attentions are shifting between the two students, and progress is being made up until 

the 4:00 mark. It is this rapid interplay between the two members of a group that 

demonstrate the two students becoming the cognizing agent – the situated solver is at 

the group level rather than the individual level. 

 Just before the 4:00 moment, student B is pausing, and states “There’s 

something I am doing wrong.” At this moment, Student A reclaims the pen, and goes on 

a different trajectory in the solution. Seemingly starting the solution again, she writes 

most of the solution, pausing when she gets stuck determining the numerator of the final 

answer. Student B and C are now observing student A from the outside. This is another 

shift in cognizing agent – the level of the situated solver shifts from the group to the 

individual. There is a pause, as she looks intently at the work from the previous task that 

is still on the board. She then has a shift of attention likely due to resonance, saying 

“That’s what we do!” And then she is able to complete the solution on her own. In this 90 
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second period, the situated solver is only student A, because for this whole interval, she 

is making progress on her own and the attention shifts are made by her only. She is 

attending to her own resources and reasoning and shifts to her previous work to gain 

inspiration (resonance). In these first three minutes, one observes the situated solver 

transitioning from the group to the individual, due to the solitary actions of student A 

making progress. 

 It is interesting to note what these students do when their solution is complete 

and the intensity of solving dies down. All three students are observed to glance around 

the room at other boards. Student C is attending to a difference between his own board 

and group 2’s board to the right (this board’s solution is incorrect). Student B checks 

their solution using technology and student A enters into a dialogue with an outside 

group (a group to the left of the video capture) about their solution strategies. One could 

consider this a shift again from the situated solver at the student level to the situated 

solver at the whole class level, as the shifts are now happening on the global scale: 

Student C is attending to the group’s work on his right, student B is attending to the 

external resource of digital technology, and student A is attending to other groups in a 

supportive role. In this 9-minute sample, by attending to the pauses, one can see the 

situated solver transition from a group to an individual and then to a whole class. In 

complexity theory, emergence does not necessarily arise from an individual, but it can 

arise from the whole system. In this situation, the emergence is the solution to the 

problem, and it does begin at the individual level, but through the shifts and interactions, 

the emergence is demonstrated first by the group and then to the whole class.  

This sample of video also demonstrates two different actions on resources. First, 

the group is accessing resources, individually and cooperatively, as they make progress 

and eventually complete the task. This is the action of pulling in resources. Next, the 

groups is observed working with and supporting other groups in the room, and this can 

be thought of as the pushing out of resources. Once the group has successfully solved 

the problem, they become an additional resource for the rest of the class of problem 

solvers. 

Group 2: 
During the lesson, the second group, which comprises of only two students, 

utilizes a single situated solver who primarily works independently. However, this solver 
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incorrectly solves the task. Throughout the video segment, the solver is seen gazing 

beyond her group and eventually discovers her mistake through external observations. 

Student D writes out the question and then pauses, putting the lid back on the 

pen. Student E begins a unique solution performing long division on the expression. She 

uses an algorithm that is not part of the class’s experience, having brought this into the 

class from her home culture (the student is from Iran). She completes the division 

algorithm and then writes the solution incorrectly on the board. It was incorrect, because 

she mixed up the quotient and the remainder from the division algorithm, demonstrating 

more of a superficial understanding of the algorithm. This incorrect solution remains on 

the board for quite some time. The pen switches back to student D, as he begins to 

sketch the graph represented by the incorrect solution. At this point, student E steps 

back and surveys the neighbouring boards. She appears to be in deep contemplation, 

as her gaze is regularly shifting across all three boards (groups 1, 2 and 3). The teacher 

steps in for a brief conversation and incorrectly verifies their solution (4:40). A moment 

later, another student from outside of these three groups comes into their group to 

question their thinking (5:40). Student E describes their solution method to this outsider 

and how it resulted in their final answer. The outsider nods at this description and goes 

back to his group with what might be an incorrect understanding. Student E then decides 

to step back in and re-write the long division using the class’s more familiar 

representation. This takes some time, but eventually finishes with the same result as 

done earlier – the quotient and the remainder are the same. However, their final solution 

remains unchanged and incorrect. She passes the pen back to student D, and steps 

back again, surveying the neighbouring boards (9:30). This survey by student E is quite 

lengthy. Seeming dissatisfied, student E approaches the board and tries to change their 

solution to align with the neighbouring boards. She is not satisfied with this, so she 

opens up her phone to review a video of polynomial long division. She scrolls along the 

video to a spot where she suddenly has an illuminating moment, and sees the original 

error made. “That’s my bad,” she says as she quickly makes the adjustment and fixes 

their solution (11:20). Student D then fixes his sketch and verifies their solution with a 

graphing calculator. 

This group progressed rapidly through a unique solution strategy. But they made 

a tiny misstep by mixing up the quotient with the remainder. This misstep was only 
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noticed after student E spent some time surveying other’s work around the room. This 

surveying indicated that there was a problem and caused her to look into her phone for a 

video tutorial of long division. After this, the correction was made. 

 

FIGURE 32   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 2 (1 OF 4) 
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FIGURE 33   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 2 (2 OF 4) 
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FIGURE 34   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 2 (3 OF 4) 
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FIGURE 35   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 2 (4 OF 4) 

 

Analysis: 

 In group 2, Student E is the situated solver for most of the activity. There are 

times when this shifts to the group, and to the whole class, but these are not often and 

not for long durations. At the 3:00 mark (fig. 33), her solution is complete and incorrect, 

and this is when her partner steps in asking for clarification, “How do you do this?” This 

marks a shift in the situated solver from the individual to the group. After their discussion, 

student D appears satisfied, and there is a pause as they both begin looking at other 

boards. There is a lull in the action as student D is completing a sketch for their solution 

and the teacher steps in for a short conversation. The situated solver shifts to the 

classroom when a student from another group steps in and inquires about their solution. 

Student E and the outside student engage in a conversation where she describes the 

reasoning behind her strategy. Throughout this time (fig. 33, 3:50 – 5:30), student E is 

seen staring at other boards on many occasions. She appears to be noticing that her 

solution is different from those around. This type of shift would be considered 

examplehood, as it is outside experiences that spurs a noticing. This pause in her action 

is lengthy; in fact, she continues to look at other boards through to 11:20. Within this 
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long pause, student D continues with his work sketching, and student E even re-writes 

her long division to a more familiar form. Unsettled with the different answer on her 

board, student E eventually shifts her attention to an outside resource (examplehood 

again) which appears to be a tutorial video on her smart phone, and this video appears 

to provide the illumination necessary to correct and complete her solution. 

Student E is primarily the situated solver throughout this story. When there are 

pauses in her action, her attention shifts to other boards, and this is when she realizes 

that there must be something wrong. This struggle continues for over 10 minutes until 

she finally shifts to the outside resource of technology. Within this lengthy pause, student 

E enters into discussions with her own partner, the teacher and another classmate. 

During these times the situated solver shifts from the individual to the group and then to 

the whole class. These shifts are subtle, and it is hard to say whether they are helpful 

overall, but they do occur. It is possible that these shifts are necessary to keep student E 

engaged in the solution and to eventually correct her error. 

Group 3: 
In this perspective, we observe a group not making much progress on their own 

and relying on other’s work for inspiration. The third group also has a single situated 

solver for most of the task, but this individual is stuck for much of the beginning of the 

video. She is seen looking outside for ideas for a large amount of time before inspiration 

finally hits and progress is made. After the completion, group understanding is the goal, 

and then student I goes out and has conversations with three different groups around 

the room. The first two conversations are resource transfers, and the third was an 

affirmation of ideas. 

This group has a very slow start after student G writes the question on their 

board. Student I steps back from the board and watches the group 2’s board quite 

intently. There is no work on their whiteboard for some time. Her attention shifts from 

group 2’s and to her own board quite frequently. She is then observed to do finger 

writing on her own palm before approaching the board and beginning their solution. She 

stops part way and steps back again. There are a lot of pauses in this group’s work. 

When she steps away, mid-solution, she gazes intently at the group to her right. She 

steps back in, makes some minor changes, and pauses again. She now engages in a 

dialogue with student H regarding some possibilities. Student I looks again at the 
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group’s work to her right (4:20). She goes back to her board and makes some more 

incremental progress. She then completes the solution and student H steps in again to 

verify it. The two students engage in a conversation that is hesitant but appears to give 

them confidence in their solution (Student H is nodding). At this point, student G steps in, 

and the whole group is in conversation with Student I describing the solution details. 

Student I leaves the group to grab her phone and check the solution with Desmos. At 

this time, Student G re-writes the solution, apparently checking her own understanding 

of it. Desmos has provided verification, and Student I steps back and observes other 

groups (mainly to her left). Student I takes a photo of their work, adding it to her digital 

notes. Student H also takes a photo. Student I now steps away and engages in a 

conversation about their solution with a student from another group, nodding and 

gesturing to the board. The other student is nodding as ideas are being exchanged. The 

other student says “this makes sense, it just takes a while for my brain…” (10:30). There 

is now a pause in the action, as student G begins to sketch a graph. Student I then 

engages in a conversation with a different student from another group, gesturing to the 

work on Student I’s board (12:30). Again, reasoning and sense making is apparent by 

the gestures and nodding. Resulting in an “OOKKK… I get it.” from the other student 

(12:55). Student I then moves over to the first board on her left and begins a 

conversation with student A. Both students are nodding and affirming each other’s 

thoughts as they detail their own steps in their thinking. Student I now being out of her 

group leaves Student G and H to discussing their solution. Student G points to another 

board and nods while discussing her graph with student H. 
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FIGURE 36   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 3 (1 OF 2) 
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FIGURE 37   GAZE-DIALOGUE TRANSCRIPT LESSON 1, GROUP 3 (2 OF 2) 
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Analysis: 

It is clear that student H is the situated solver, in control of her group, as her 

partners are passive and to the side for much of the solution process. She does seem to 

rely on outside resources once at the beginning of the solution (4:20 – 5:20), as there is 

no dialogue and one can see her gazing at the board to their right. This long gaze 

appears to be enough, as student H then proceeds to slowly complete the solution. After 

it is complete (6:40), student H then begins to explain and justify her work to her two 

partners. There does appear to be continued uncertainty with her work, as she is seen 

gazing at the board on her right 4 times after she has explained her work to her partners. 

Summary analysis for lesson 1 
 Through the analysis of these three groups, there are some details that are 

beginning to emerge. Resources are not only being used to make progress in a problem, 

but they are also used to verify or look back on a solution. Resources are moving in two 

directions; they are not only taken in, but they are also being pushed out. And, the 

problem-solving process looks very similar at each of the three levels for the situated 

solver.  

 In all three groups, there is a verification stage in their solutions. In group 1, the 

group uses technology (fig. 31, 6:40) and a conversation with an outside student (fig. 31, 

7:50) to verify their solution. In group 2, the verification is when the student first notices 

that her solution is not the same as the solutions around her. She is using other group’s 

boards as resources for this verification. Ultimately, she uses technology to verify that 

her solution is indeed incorrect (fig. 35, 12:00), and then she uses this resource to 

amend her work. In group 3, inter-group conversation plays a role in the verification 

process (fig. 37, 6:40), and technology is also used (fig. 37, 8:00). Resources are not 

only necessary in the progression of a solution, but they are also necessary in the 

verification of a solution. It should also be noted here that all groups even participated in 

a verification. By engaging in solution verification, the groups are demonstrating a desire 

for understanding a solution. If their goal was only to get an answer, then there would be 

no need for verification. 

 Resources are not only taken in when solving problems, but this data also shows 

resources being pushed out. This pushing out of resources could be considered as an 

example for some of the conditions for complexity. Pushing out resources shows a de-
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centralized control amongst the students and could also be considered as an example of 

a neighbour interaction. There appears to be a culture of responsibility in this Thinking 

Classroom where students are responsible for their own understanding, and they are 

also responsible for their colleague’s progress and understanding. Group 1 engages in a 

conversation with an outsider at 7:50 (fig. 31), group 2 supports an outsider at 5:40 (fig. 

33), and group 3 works with two different groups at the end of their solution (fig. 37, 

9:50). If it only occurred in one group, then it might not be a pattern; but resources were 

pushed out by all three groups. It appears that individual understanding is not the only 

priority in a Thinking Classroom, there is also a culture for whole class understanding 

that motivates the actions of students. 

 Lastly, the problem-solving process looks very similar at each of the three 

situated solver levels. When the situated solver is at the individual level, progress is 

made while using internal resources and progress is paused when those internal 

resources are not sufficient. The solver then looks externally for resources. The external 

search includes but is not limited to looking at other boards around the room, using 

technology, and dialoguing with a partner. If these outside resources help, then the 

individual solution continues. If not, then the situated solver may move to the group level. 

At the group level, the situated solver now makes progress in much the same way. As a 

group, they make progress in the problem relying on their collective resources, and 

progress is paused when these group resources become insufficient. The group then 

looks externally for more resources. The problem-solving process looks very similar at 

all levels. 

Lesson 2 
The task for lesson 2 is re-stated in fig. 38 for reference.  

 

In this lesson’s group 1 perspective, we see a three-person group where the 

solution is completely solved by just two of the students. The third student is a quiet 

Write as a single logarithmic expression and then state restrictions on x. 

 

FIGURE 38   TASK FOR LESSON 2 
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bystander for most of the time, only stepping in at the very end. In the second group’s 

perspective, we see three weaker students struggling to make sense of the task. This 

group only makes progress after an outside injection of resources. And in the third 

group’s perspective, we see an almost solo contribution by one group member who is 

relying heavily on contributions from around the room. Again, each group will be 

analysed separately, because they capture different aspects of collaborative problem 

solving and decision-making. For each group, I will summarize the group's perspective 

and use the gaze dialogue transcript to support the analysis and highlight the specifics 

of the problem-solving process. 

 

FIGURE 39   IMAGE OF ALL THREE GROUPS WORKING ON LESSON 2. 

Group 1: 

The audio quality for this group was quite weak, so most of the dialogue is 

marked as unintelligible. In this perspective, students A and B appear to be the most 

active in the problem-solving process. Student C is out of the video frame for the first 

minute, and even after he steps into the frame, he does not appear to contribute to the 

solution. Student C plays more of an active role at the very end of the video.  

In the first minute (fig. 40, 0:40 – 1:40), students A and B are in discussion, they 

are both seen gesturing to the board, the pen switches possession from A to B but no 

visible progress is made. At 1:40, the teacher makes an announcement, “table 2 has a 
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great idea,” and both of these students gaze over to table 2’s board (table 2 is across 

the room, not to be confused with group 2). Student A is heard saying “ohhhh,” and then 

is instructing student B on how to progress. Progress is much more rapid at this point, 

but they are still unsure; there uncertainty is seen through their many erasings and re-

writings of the short three-line solution. After this outside influx of resources, the initial 

solution to the simplifying problem is finished by 3:30 (fig. 41). At this time, student C 

steps into the group, and student A is seen describing the solution to student C. This is 

visible through the many gestures by student A to different spots in the solution on the 

board and culminates in both students nodding. The pen switches into student A’s 

possession as they begin to work on the second part of the problem, stating restrictions 

on the variable. Again, this part of the solving is carried mostly by students A and B, as 

student A eventually writes x≠0 on the board (fig. 41, 4:40). Student A and B leave the 

frame, leaving student C behind. Student C is observed to be staring intently at the 

solution. Student B comes back a short time later (fig. 41, 5:20) and makes a change to 

the restrictions, erasing and then writing x≠<0. Student C continues looking through the 

solution on his board until the 7:00 point. At this point, student C is observed being the 

most active that he has been for the entire solution process. Student C is seen 

explaining the solution to an outside student gesturing to different parts on the board. 

Student B is also at the board but does not appear to be part of the conversation. 
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FIGURE 40   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 1 (1 OF 2) 
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FIGURE 41   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 1 (2 OF 2) 
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Analysis: 

This perspective is interesting for a couple of reasons. Students A and B are the 

primary solvers for most of the work, and there is a definitive moment when they appear 

to move from being stuck to being unstuck. This moment occurs when they are 

encouraged to look at the work on an outside board – this would be considered 

resonance because it is something seen that causes a sudden insight. It is also 

interesting to observe student C. Student C appears to contribute almost nothing to the 

solution, not even participating in any of the solving dialogue; however, after a 

considerable amount of time (more than 7 minutes), student C is observed to describe 

the solution to an outside student (fig. 41). 

The situated solver for much of this solution is at the group level, however, this 

changes to the individual frequently. The vast majority of the dialogue arrows are coming 

from student A, but student A does not have the pen. For most of the solution, it is 

student B who has the pen and is doing the writing. Students A and B are generating a 

solution in concert – the pair have become the cognizing agent. Due to the dialogue 

arrows between student A and B and student B doing most of the writing, the situated 

solver is changing levels from the individual to the pair many times throughout this 

section (fig. 40 and 41, 0:40 – 3:30).  

Student A and B appear to be stuck for the first minute due to the observation 

that no writing is taking place. They become unstuck after shifting their attention to an 

outside board at 1:40 (fig. 40). This indicates that possibly the resources of the pair were 

not sufficient, and the situated solver became the whole class just for a moment as 

resources were acquired from another group. This resource collection appears to be 

sufficient for students A and B to continue with the rest of solution on their own.  

It is interesting to observe student C. Student C appears to not understand much 

of what is happening, as he is positioned out of the video frame for much of the solution. 

And when he finally appears in the video, he does not contribute anything to the work. 

On first view, I assumed he was not at all understanding what was happening, but the 

data brings something else to light. There is a short period in the middle of the solution 

where student A is seen speaking directly to student C and gesturing to the work on the 

board (fig. 41, 3:30 – 4:00). Perhaps more importantly, when student C is in the video 

frame (fig. 41 and 42, 1:50 – 7:00+), he is always staring intently at his partner’s work. If 
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he was not getting something out of the solution, he would likely move to off-task 

behaviour, such as chatting with a friend or looking at his phone. But he remained on-

task for the entire solution; he just did not participate with his partners. At the very end of 

the video clip, we see that he does appear to understand the solution, as he is observed 

speaking with an outside student and gesturing to different parts of the board.  

Group 2: 
In this group’s perspective on the same lesson, the whole group makes little 

progress on the task even after the teacher announces a hint at the 1:30 mark. Student 

E seems to be the only member of the group who even hears the announcement, as you 

can see him glancing at table 2’s board five times between 1:30 and 3:00 (fig. 42). It is 

finally on this fifth glance that something clicks, and student E announces, “they got a 

good idea over there,” and progress begins to be made. Student E makes one more 

glace at table 2’s board at 3:15, but this final glance seems to only affirm the work that 

they are doing, and they complete the initial solution by 4:00 (fig. 43). The solution 

happens to be incorrect, because student D incorrectly applied an exponent property in 

the final step, using his calculator. Instead of subtracting the exponents for division with 

common bases, he divides the exponents. This error goes unnoticed for the entire time. 

After writing the incorrect solution at 4:10, they devote their attention to determining the 

restrictions. Students D and F have a lengthy conversation about a possible restriction, 

but this does not result in any progress. At 5:20 (fig. 43), the pen is put down and there 

is a pause in the action. Students D and E begin surveying other boards and student F 

appears to have given up, as she is seen attending to her phone. Student D notices 

something on the board to their right, says “look what they did there,” and then starts 

working on his calculator. He uses his calculator to confirm that the input of a logarithm 

cannot be zero, and then uses the calculator again to confirm that the input cannot be 

negative. He then picks up the pen (fig. 44, 5:50) and finishes the solution on the 

whiteboard. 
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FIGURE 42   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 2 (1 OF 3) 
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FIGURE 43   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 2 (2 OF 3) 
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FIGURE 44   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 2 (3 OF 3) 

Analysis: 

In this perspective, the group’s resources are not sufficient to make progress in 

either stage of the solution. The group is fully engaged in solving the problem, but they 

do not make any progress until one of the members fully processes a hint that is on 

another board (resonance). This does take some time, as the student looked at the 

board containing the hint five times over the course of 90 seconds (fig. 42, 1:30 – 3:00). 

The group also becomes stuck in the second stage of the problem, stating restrictions on 

the variable. This time it is student D who gleans some ideas from a different group’s 

board. The idea is not just taken, but student D feels the need to verify it first with his 

calculator. This indicates a desire for understanding the solution over just getting an 

answer on the board. 

Based on the observations of the continuous dialogue between student D and E 

for most of the initial solution, this is a situation where the situated solver is at the group 

level. Resources are not sufficient in this group as can be seen by the eventual pause in 

writing and in dialogue between 2:20 and 3:00 (fig. 42). In this period, student E is seen 
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gazing at table 2’s board five different times, due to the hint given by the teacher. This 

demonstrates that simply viewing a board is not necessarily sufficient for making 

progress in the problem. It seems that student E needed some time to understand the 

implications of the hint before incorporating it into their solution. Student D exhibits 

similar behaviour in the second stage of the problem. He is observed gazing at the board 

to their right apparently noticing the other group’s solution to the restriction part of the 

problem. But he also does not immediately transfer this solution idea onto his board. 

Instead, he takes some time to verify the idea with his calculator before incorporating it 

into their solution. This shows that in this environment, students are not simply motivated 

to achieve answers in their problems; rather, they are motivated to understand the 

problem, and the resources are gathered to gain understanding towards their own 

personal solutions. For this second stage of the solution, it is apparent that the situated 

solver has shifted to the individual level, because most of the progress was made solely 

by student D; and although there was some dialogue, this appears to be more a 

conversation with himself. 

Group 3: 
In this third perspective on the second lesson, the situated solver is almost 

entirely student H. It appears that she is able to solve the majority of this problem using 

her own internal resources. She is holding the pen and writing the solution from the 

beginning, but she is also speaking to her partners, as she writes each step. Student G 

does seem to contribute a little to the first stage of the solution (fig. 45, 1:00 – 1:10), but 

again, this is more just affirming the work that student H is already doing. Student H 

notices that the third expression can be written as 5 over 2 just moments before the 

teacher announces the hint at 1:30. They all glance at table 2’s board, but this is just 

affirming student H’s idea. Student H spends extra time explaining this step to student I 

(fig. 45, 1:50 – 2:10), to student G a little later (fig. 46, 3:30 – 3:50), and then again to 

student I (3:50 – 4:20). There is a significant amount of time (3:00 – 3:30) where they are 

all three staring at their work. It is possibly this time that generates student G and I’s 

further questions on the 5 over 2 step. After the initial solution is complete, Student G 

takes the pen and begins to work on the restrictions. Even though student G is doing the 

writing, student H is contributing the ideas to be written. At the very end of the completed 

solution, student H asks both of her partners if they do understand the solution, and they 

both acknowledge that they do. 
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FIGURE 45   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 3 (1 OF 2) 
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FIGURE 46   GAZE-DIALOGUE TRANSCRIPT LESSON 2, GROUP 3 (2 OF 2) 
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Analysis: 

In this group, there appears to be no outside resources necessary for making 

progress in the problem. Student H seems to complete the entire solution relying only on 

her own personal resources. Due to the collaborative nature of the room, she is not just 

completing the solution on her own; rather, she is observed at every step checking with 

her partners to make sure that they are in agreement and that they understand the 

steps. She is even observed at the end (fig. 46, 4:50) speaking with an outside student 

(student B) to explain how to determine the restrictions. 

In this group, the situated solver appears to be exclusively student H. She is 

writing with the pen and describing her steps as she makes steady progress through the 

task. There are three moments where student H is observed looking outside her group at 

other boards, but each of these appear to be to affirm her work and not to generate 

ideas. There does appear to be a genuine desire for understanding by her two partners. 

In the critical step of changing the denominator of 2 to a fraction of 5 over 2, both 

partners push student H to explain that step. Student G does this once at 3:30, and 

Student I does this twice at 1:50 and at 3:50 (fig. 45 and 46). This perspective is 

interesting to analyse, as it shows what happens in a choice-affluent space when the 

situated solver is one person for the entire problem. In this case, the solver is still seen 

to use her outside resources to affirm her work, but also she plays a teacher role for her 

partners and other students in the room.  

In this collaborative space, even when the progress is made by one individual, 

the situated solver changes levels. Student H appears to make all of the necessary 

steps on her own to solve the problem, but within this solution, she is frequently in 

dialogue with her partners and also gazing outside of her group. When she is in dialogue 

with her partners, the situated solver is changing to the group level and when she is 

gazing outside, the situated solver is changing to the class level. The progress is being 

made on the whiteboard solely by student H, but during this time, student H shifts her 

attention amongst a myriad of outside resources. It is impossible to know what is gained 

through these external shifts, but they do happen, and they may be providing subtle 

incites to student H allowing her to progress.  
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Summary analysis for lesson 2 
It is becoming apparent that the change amongst situated solver levels is not 

sequenced nor well defined. I expected that the situated solver would move from the 

individual to the group when the internal resources of the individual became insufficient; 

and then move from the group to the class when the shared resources of the group 

became insufficient. The data supports that these changes do occur, but they do not 

necessarily occur in this sequence. I also expected that the transitions between these 

levels would be well defined. I predicted that there would be a noticeable pause, 

indicating that the internal resources had become insufficient, before transitioning from 

the individual to the group level. Although there is evidence of these pauses in the data, 

the transitions between levels also happen without pauses. Sometimes, these transitions 

are observed to happen frequently within one or two 10-second intervals (fig. 40, 1:30 – 

1:40, 2:00 – 2:10; fig. 46, 4:20 – 4:30). It is becoming apparent that the change of levels 

in the situated solver is more unpredictable and less linear when groups solve problems. 

Through the analysis of these three groups, one becomes aware that the situated 

solver is changing many times throughout each solution. As mentioned earlier, the 

situated solver can be considered at three different levels:  

The individual – the situated solver is at the individual level when the main actor 

in the solution process is the individual and progress is made through the use of 

internal resources. 

The group – the situated solver is at the group level when two or three group 

members are working in concert and progress is made through the use of the 

group’s shared resources. 

The class – the situated solver is at the class level when solution progress is due 

to resources acquired outside of the group. 

I thought it might be interesting to analyse the gaze-dialogue transcripts themselves and 

see how they might inform us on the frequency and durations of problem solving 

happening at each of these levels. To accomplish this, I interpreted inner group dialogue 

arrows to indicate a group level situated solver, gaze or dialogue arrows outside indicate 

a class level situated solver, and lack of arrows would indicate an individual level 

situated solver. Each 10-second interval was recorded as one of the three possible 
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levels for the situated solver according to the presence and direction of the arrows. 

Admittedly, this is not precise, but on the whole of two lessons and three groups per 

lesson, this provided an interesting layer to add to this analysis. 

TABLE 1   SITUATED SOLVER LEVEL DISTRIBUTION 

Lesson 1 

Individual 

Level 

Group 

Level 

Class 

Level total 

Individual 

Level 

Group 

Level 

Class 

Level 

Group 1 8 25 7 40 20% 63% 18% 

Group 2 14 14 18 46 30% 30% 39% 

Group 3 23 10 17 50 46% 20% 34% 

        
Lesson 2 

       
Group 1 6 18 4 28 21% 64% 14% 

Group 2 10 18 12 40 25% 45% 30% 

Group 3 5 18 6 29 17% 62% 21% 

        
Aggregated 66 103 64 233 28% 44% 27% 

 

Table 1 (above) shows the situated solver level distribution for each group and the 

aggregated level distribution for all groups. 

 This table confirms some of the more detailed observations made when 

describing the results of each group. For example, in lesson 1, group 3’s progress was 

made mostly due to the efforts of one of the students (student I). In this table, one can 

see that the situated solver was at the individual level for 46% of the problem-solving 

time. Contrast this with group 1 in the same lesson. In group 1, students A and B were 

highly collaborative for much of their solution, and the table supports that group 1 was at 

the group level for the situated solver for 63% of the problem-solving time. Based on 

these and other comparisons, the table accurately summarizes the observations made 

of each group in each lesson. 

 This table indicates that the problem-solving process in choice-affluent 

environments, such as Thinking Classrooms, may involve acquiring resources at all of 

the levels of the situated solver all of the time. The data is collected from six different 
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groups working on two different tasks, and the data appears to be quite different in the 

individual group stories. The data includes groups that are highly collaborative and 

highly resourced, groups that have individual solvers, and groups that are low resourced; 

and in all of the groups, the problem-solving process includes the situated solver at all 

three levels. The aggregated results suggest that most of the problem-solving time is 

spent at the group level (44%), and the other two levels are split somewhat evenly: 

individual (28%) and class (27%). But even when the group level is the highest (lesson 

2, group 1 (64%)), the group is still changing to the other two levels: individual (21%) and 

class (14%). In choice-affluent environments, the level for the situated solver will shift 

through all three possibilities regardless of the group composition or task. 
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Chapter Six - Discussion 

Having taught in Thinking Classrooms for over 10 years, I had some initial 

predictions and expectations on what this data was going to reveal (see Chapter Three). 

I expected that the situated solver level would advance as the individual or group ran out 

of internal resources, and I expected these advances to be sequential or linear in nature. 

Going into this study, I expected that the data would confirm these predictions and 

answer my research questions succinctly. In the end, I did notice these changes; 

however, they were not necessarily sequential nor predictable.  

The initial results show that the situated solver can be considered on different 

levels. There is the individual, there is the small group collaborative, and there is the 

global level representing the whole class of learners. Resource acquisition occurs at 

each level; sometimes there is a pausing that may indicate the condition of becoming 

stuck. When the situated solver is at the individual level, the resource acquisition is from 

the internal resources of the individual. When the situated solver is at the group level, 

the resource acquisition is from the shared resources of the group. And when the 

situated solver is at the class level, the resource acquisition is from outside the group. At 

each of these levels, when the resources become insufficient, the situated solver may 

enter the condition of being stuck. To transition from stuck to un-stuck, the situated 

solver shifts to a different level to access different resources. At the individual level, this 

condition of being stuck may be noticed when the person holding the pen (the situated 

solver) reaches a point where the pen stops moving and the problem-solving pauses. At 

this point, the solver has become stuck, and begins to access external resources by 

dialoguing with other group members or passing the pen to a partner. If these actions do 

not result in progress, the situated solver is now at the group level and the group solver 

has become stuck. The group will then access external resources in the form of gazing 

at other group’s work around the room, dialoguing with members from a neighbouring 

group, reaching out to the teacher in the room or accessing external resources through 

their access to digital technology. Each of these moves is observed in the data to be 

occurring both in sequence with respect to the individual level and simultaneously when 

the situated solver is the small group or the whole class. As the analysis of the data 

continued, it became apparent that in these choice-affluent environments, the shift 

amongst levels is occurring spontaneously and non-linearly as the task is being solved. 
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By spontaneous, I mean that the shifts appear to occur without cause; and by non-linear, 

I mean that they do not appear to fall within a structure of a sequence of problem solving 

as was predicted before the study began. The individual will shift to the group, then back 

to the individual, or it may shift from group to the whole class, then back to the group 

again. It is in these shifts of perspective where outside resources are being acquired and 

progress is being made. 

In the initial description, the levels of the situated solver and the state of being 

stuck all appear to be very well defined and simple in nature. On deeper analysis of the 

data, it became apparent that the switching of levels was not so simple. When groups 

solved problems in the data, the transitions amongst levels were not always predicated 

on being stuck; rather, the transitions were often occurring spontaneously and non-

linearly. There are situations when progress was being made and the group does not 

appear to be stuck, and I observed the situated solver changing levels (lesson 2, group 

3). And there are situations when groups are stuck, resources in neighbouring groups 

are abundant, and the situated solver does not shift levels to acquire those external 

resources (lesson 1, group 2). Although it is a nice model for describing some of the 

processes for solving problems in choice-affluent environments, the data shows that it is 

not always this simple – problem solving in choice-affluent spaces is more complicated, 

perhaps even complex. 

Phases of Progress 
In these two lessons of video data, it became apparent that the transitions of the 

situated solver among levels was a complex process. It was complex in the sense that it 

did not obey a simple construct – I was not able to describe all transitions in the same 

way. When an individual situated solver depleted their internal resources and became 

stuck, sometimes this would lead to a change in level to a group and sometimes it would 

not. When a group was seen to be making good progress on a solution (group resources 

were abundant), sometimes this group would still seek resources from the outside. As is 

the case with many real-life situations, ideas can be simple and organized, but real data 

can be messy. The complexity of this Thinking Classroom environment is an important 

result to be taken out of this analysis, but there is still value in describing some of the 

simpler interactions and observations gleaned from the data. 
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One can see evidence of a group shifting attention amongst individual resources, 

resources shared by the group and resources from external sources to make progress in 

a problem-solving activity. Prior to the analysis, I had anticipated 3 phases that groups 

would move through when solving problems in choice-affluent environments. Focussing 

on lesson 1 and group 1 (fig. 44 and 45), one can see a nice example of all three of 

these phases: 

Phase 1 (fig. 44, 4:00 – 5:30): Students A and B are making progress in the 

solution. Student A is writing and describing their steps to student B as progress 

is made. In this phase, the situated solver is at the group level, because students 

A and B are working together to make progress. 

Phase 2 (fig. 44, 5:30 – 6:00): Students are stuck. Student A puts the pen down, 

and both students stop activity and stare at their own work. 

Phase 3 (fig. 45, 6:00 – 7:00): Student C is observed looking at another board, 

and they draw their partner’s attention to this board. Students A and B also look 

at the board, bringing in the outside resources. At this point, the situated solver 

moves to the class level, as resources from outside of the group are being 

accessed. 

Phase 1 (fig. 45, 7:00 – 7:30): Student A picks the pen up and continues 

progress on the problem. 
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FIGURE 47  GROUP BECOMES STUCK AT 5:30 
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FIGURE 48  GROUP IS CHANGING LEVELS AT 6:30 

In phase 3, the group’s attention shifts outside. This group attended to a board 

on their right in the room, the board apparently showing a different solution. This outside 

resource appeared to be sufficient for the group to move back into phase 1 and make 

some contributions towards a solution. This third phase may also be characterized by 

individuals conversing with other classmates, dialoguing with the teacher, and 
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sometimes even going onto their phones to seek resources from outside of the class. 

Phase 3 continues until the group is satisfied that their resources are adequate, and they 

can move back into phase 1 – sometimes solving the problem and sometimes getting 

stuck again. Prior to the analysis, I expected that these groups would progress through 

these three phases in a linear fashion: 

1. Progress in a problem is made using internal resources of the situated 

solver. 

2. Situated solver becomes stuck. Activity decreases and progress in 

problem stagnates. 

3. Situated solver moves up a level. This consists of glances, conversations, 

group visits, or dialogue with teacher, depending on the level of the 

situated solver. This phase continues until: 

a. Problem is solved 

b. Progress is made and the situated solver is able to move down a 

level and back to phase 1. 

c. Progress is not made and situated solver becomes stuck, phase 

2. 

When solving problems collaboratively in choice-affluent environments, I 

expected groups to move linearly through three phases (fig. 49). They would begin 

working within their group, and there would usually be a single situated solver at the 

individual level. This individual would shift their attention amongst their individual and 

internal resources until they solved the problem or until they became stuck. Phase 2 is 

being stuck. In this phase, they would remain engaged and on task, but noticable 



 

 

106 

progress would decline, boardwork would stop and the pen may shift to other members 

(or be put down altogether). When the individual shifts their attentions to outside 

resources, they would move into phase 3. This is the benefit of choice-affluent 

environments. In classrooms where problems are solved individually or collaboration is 

contained within groups, phase 3 requires the singular action of accessing the teacher 

as an outside resource. In choice-affluent environments, like Thinking Classrooms, the 

outside resource space is abundant and heterogeneous. In phase 3, students may shift 

to the group level and collaborate with others within their group, or it may shift to the 

class level and observe other group’s work (inter-group). At the class level, they may 

converse with other groups or the teacher, and they may use technology to access 

additional resources (extra-group). Students have many different choices to shift their 

attentions and emerge a key solution idea that will allow them to move back into phase 

1.  

After the analysis, I noticed that these expectations were far too simple. Groups 

were observed to move through these phases in sequence, and the condition of being 

stuck was noticed at times; however, there is an abundance of data that does not follow 

this sequence, and levels of situated solver often change without entering phase 2 

(being stuck). After the analysis, it became apparent that the problem-solving process in 

choice-affluent environments like Thinking Classrooms is far more complex.  

In Thinking Classrooms, and indeed in this classroom, the conditions for 

complexity (Davis & Simmt, 2003) are all met:  

Problem is solved 

Phase 2: Stuck 

Phase 1: Situated solver 

progresses using internal 

resources 

Phase 3: Situated solver 

moves up a level 

 

FIGURE 49  LINEAR DESCRIPTION FOR COLLABORATIVE PROBLEM SOLVING 
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Internal diversity – the students act as individuals with their own variety of 

experiences and personal resources. 

Redundancy – despite their diversity, the students all have a lot of commonality. 

They are similar in age, they have similar school back grounds, and they come 

from similar communities of learners. 

Decentralized control – there is no direct teacher control over how students 

navigate their tasks. Students are provided freedom to explore each task and 

generate a strategy of their choosing. 

Organized randomness – each class, students are placed into random groups so 

that they have different experiences with different students in every class. 

Neighbour interactions – literal neighbour interactions occur due to the students 

standing side-by-side at the whiteboards, but a figurative neighbourly interaction 

also occurs in the sense that ideas on boards are also bumping into one another.  

These conditions are described to be necessary, but not sufficient for creating a 

complex space and for learning to emerge, meaning that just because the conditions are 

met does not guarantee complexity or emergence. The observations made through this 

analysis more clearly show what complexity looks like in a classroom environment. The 

shifts in levels of the situated solver were frequently unpredictable and continuous in 

nature. The data shows a more undefined and uncaused switching amongst levels as 

progress is made. There are instances where groups move through all three phases in 

sequence and the condition of being stuck is noticed, but there are many more 

examples of groups shifting spontaneously and non-linearly as a solution is made. Even 

when a solution is made, activity does not cease. Students are observed sharing their 

knowledge, pushing their newly gained resources out to other groups, and checking their 

own individual understanding. In this complex space, groups are learning together, but 

understanding individually, and it is in this tension of purpose that activity and 

involvement remains high within a problem-solving episode and after. 

The data suggests that although each level of the situated solver is represented, 

there is no defined order or sequence to how emergence of an idea occurs. Figure 50 

(from Chapter Three) is probably the better representation for this process, as it 



 

 

108 

suggests that even when the situated solver is at the class level, and ideas are emerging 

from the intersection of different groups, the arrows within the individual circles are still 

shifting and scanning the internal resources, and the individuals within each group are 

intersecting and sharing resources. The situation is best described as fuzzy – there is no 

defined sequence and no repeating pattern in how ideas emerge in these choice-affluent 

spaces. 

 

 As groups eventually solve the problem, they are always encouraged to keep 

asking questions. This has become enculturated in my Thinking Classroom starting from 

our first day together in September. Students know that when they think they have 

finished their problem, they are to keep asking questions, such as: 

o Does everyone in my group understand the solution? 

o Is the solution correct? How do I know our solution is correct? 

o Can this problem be solved in another way? 

FIGURE 50  COLLABORATIVE PROBLEM SOLVING IN CHOICE-AFFLUENT ENVIRONMENTS 
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o Does the mathematics on our board represent and communicate our 

thinking effectively? 

o What next? Are there any extensions that might be interesting to explore? 

By participating in these types of reflections, learners are shifting their attentions from 

the particulars of the solution steps from the problem-solving process to the general. 

Mason (1998) writes: “the process of generalising, of seeing how a number of previously 

disparate items can be subsumed under one generality, is the occasion for a sense of 

pleasure, of expansion of awareness, of release of energy” (p. 254). Indeed, I often 

observe groups shouting in joy and giving each other high-fives as they move into this 

third stage; the positive affective experience plays a subtle yet powerful role in their 

overall feelings towards mathematics. Furthermore, this generalizing shift is the time 

where learners are adding to their repertoire of resources. Consciously or unconsciously, 

their experience has been enriched and, likely, their mathematical knowledge has 

increased. This is apparent for me, as an observer, many times when I hear students 

say at the beginning of a new task, “this is similar to the task we did last week.” The 

reflection stage is a time for students to apply a sort of meta-thinking about the problem 

that they have solved. Through engaging in the reflection questions, they are shifting 

their attention to the problem as a whole, and in doing so, they are adding to their 

personal resource inventory. 

 Choice-affluent environments, such as Thinking Classrooms, are spaces where 

the problem solving is enriched and accelerated, the affluence of choice acts like a 

catalyst in the problem-solving process. Without a choice-affluent environment, when 

problem-solving is a solitary activity, the learner is using a reduced resource space and 

is more likely to rely on grace as a source for a shift of attention that may (or may not) 

spur progress in the problem. To use another metaphor, problem-solving can be thought 

of as the process of mixing chemicals – a chemical reaction. If you have one chemical, 

this is like a solitary problem solver, very little happens. When you have a group of 

chemicals, like a group of people, reactions start to take place, new chemicals are 

formed; things are getting interesting. When you have a whole lot of chemicals, and you 

add some heat, and some kinetic energy, like a mixer, well then, you had better watch 

out; things are about to get exciting. Problem-solving in choice-affluent environments is 

like the last case; learners have access to a potpourri of outside resources, and their 
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attentions autonomously shift amongst them like the mixing of the chemicals resulting in 

emergent ideas or strategies that are necessary to solve the problem.  

The research questions 
 At the end of chapter three, two research questions were stated: 

1. What forms of interactions seem to support the movement of ideas and how 

do these interactions support problem-solving? 

2. What form do neighbour interactions take and how do they align with the 

theory of complexity theory? 

What became apparent after the analysis is that answering one of these questions 

actually answers both of them. The forms of interactions that support the movement of 

ideas are, broadly speaking, neighbour interactions; and, what do neighbour interactions 

look like? They are essentially those interactions that support the movement of ideas. 

Ideas are the stepping-stones that allow a solver to progress through a problem. 

In a math class, ideas can be a strategy, a diagram, a representation, or anything that 

allows a solver to move from being stuck to being unstuck. In many classrooms, if ideas 

are not generated by an individual solver’s shift of attentions through past experiences 

and personal knowledge, then they are reliant on the teacher, a fellow student, or a 

moment of inspiration.  

All classrooms are complex systems where learning can be considered as 

emergent; however, in choice-affluent environments, such as Thinking Classrooms, the 

conditions for complexity are strong, and emergence is more common and more likely. 

In the data for this dissertation, one sees these emergent events stemming from 3 

different situated solvers: Individual, group, and class. 

Intra-group communication is when a group is making progress without any 

outside resources. The situated solver may be at the individual level if they are working 

independently using internal resources, but it often shifts to the group level as partners 

engage in dialogue and progress continues. The individuals in the group may have 

sufficient resources for emergence to result. Inter-group communication is when the 

group’s resources are not sufficient, and they need to rely on outside resources. The 

situated solver is shifting to the class level, as they may see an idea on another board, 

receive an idea from a conversation with an outside member, or hear an idea from a 
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nearby student conversation. Extra-group communication is when a group makes 

progress by retrieving a resource outside of other groups or other boards. Extra-group 

communication can be from a teacher, or from any form of technology: websites, 

graphing calculators, YouTube videos, etc…  

These are the interactions that support the movements of ideas. Ideas move 

passively within groups through direct dialogue with other group members, and they are 

also moved into groups through gazing at other’s whiteboards, overhearing other 

conversations. Sometimes ideas are moved actively. Ideas are moved intentionally by a 

teacher providing a hint, or by a student from outside the group coming in and providing 

an idea. Thinking classrooms have a framework in place that supports and encourages 

ideas moving in all of these ways. 

 In complex systems, ideas move through these three levels of situated solvers. 

Because of the nature of complexity, these actions cannot be forced or planned. Its very 

nature requires a randomness and a freedom amongst the individual agents for self-

organization or emergence to occur.  

Davis & Simmt (2003, p. 145) outline five conditions of complexity as necessary 

but insufficient conditions for systems to arise and to learn: (a) Internal Diversity – 

enables novel actions and possibilities. (b) Redundancy – sameness among agents is 

“essential in triggering a transition from a collection of me’s to a collective of us.” (c) 

Decentralized Control – locus of learning is not always the individual. (d) Organized 

randomness – emergent behaviours are about living within boundaries defined by rules, 

but also using that space to create. Liberating constraints draw a distinction between 

proscription and prescription in tasks. (e) Neighbour Interactions – there needs to be 

collaboration… not necessarily people to people but more for ideas to bump up against 

one another. This leads to the second question:  What do neighbour interactions look 

like within a complex system? 

As stated earlier, the interactions are the conversations with fellow colleagues, 

outside group members, or the teacher. They are the glances at any board work in the 

room (including that belonging to the group). They are the overhearing of nearby group 

conversations or louder conversations from around the class. And they are also the 
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multitude of interactions with outside sources through the available digital technology on 

most student’s smartphones.  

In choice-affluent environments such as Thinking Classrooms, neighbour 

interactions are the actions necessary for ideas to move. In the data, there are many 

different forms of these actions. It is through these interactions that progress is achieved 

when solving problems, and it is the lack of these interactions which will therefore 

prohibit progress in less choice-affluent environments. These interactions are necessary 

for students to gain resources that they do not have from their own experience and 

knowledge. The classroom itself is the smartest learner in the room; therefore, it is 

necessary for the individual learner to have access to this resource when they are no 

longer able to make progress in a problem. 

Through analysis of the data, and answering the research questions, I have 

learned something more. I have learned that problem-solving is not a deterministic 

process. It seems that all of my attempts to predict or describe problem-solving 

behaviour have counter-examples within the data. I can describe themes and specific 

scenarios, but in this complex space, the behaviours are more random (i.e., a student 

will appear to be fully independent in her solution, but she is still observed to be glancing 

and conversing with others to gain resources; or, students appear to be stuck, and they 

do not access the good resources right next to them.) Despite all of these contradictions, 

progress is still made, and problems become solved. I believe this is happening because 

of the randomness and the richness of the system as a whole. 
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Chapter Seven - Conclusions 

Problem solving is an activity that is valued in most professions and vocations in 

our society (NCTM, 2000), and it also plays a central role in many mathematics 

classrooms and in most mathematics curriculums. Research in mathematical problem 

solving as a collaborative activity has mostly been studied within small groups (see, for 

example, Ryve, 2006), with not much attention devoted to problem-solving where 

resources are accessed outside of small groups. Koichu (2018) presented a framework 

for studying problem-solving in environments that more closely match problem-solving in 

our modern society; he termed this problem-solving in choice-affluent environments. 

Thinking classrooms are examples of these choice-affluent environments where 

students have an abundance of resources due to the public nature of conducting their 

work on whiteboards positioned around the classroom. In this study, I was interested in 

how and when students access external resources when solving problems in these 

choice-affluent environments. Using Schoenfeld’s (1985) theory on resources and 

Mason’s (1988) theory on shifts of attention, I analysed classroom video to better 

understand the how and the when question. 

 Gaze-dialogue transcripts were created from actual recordings of students 

problem-solving in a Thinking Classroom. After analyzing some of the video and the 

transcripts, I noticed that problem-solving may begin with students accessing a mix of 

individual and intra-group resources. This appears to continue until either the problem is 

solved, or the group becomes stuck; at which point, students will begin to look for 

resources outside of their group.  It is this extra-group (or inter-group) resource 

acquisition that makes choice-affluent environments, such as Thinking Classrooms, so 

unique. By accessing outside resources, such as other groups, the teacher or the world 

wide web, students are more accurately engaging in real-world problem-solving, building 

their own problem-solving skills and adding to their individual repertoire of resources and 

experience – ultimately becoming better problem solvers. 

 However, after looking at the data on a whole, it became apparent that these 

processes were occurring, but they were not occurring in the expected order or with the 

expected precursor events. The data supports that collaborative problem-solving in 

choice-affluent spaces is non-linear and less predictable than anticipated. Ideas are 
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moving within Thinking Classrooms in a myriad of ways. The progression of one group’s 

solution will not likely happen again in a similar group in a similar problem. In choice-

affluent spaces, resources are accessible from a variety of sources, and the situated 

solver will make use of these resources in different ways every time. If we would like our 

students to gain experience in solving problems, then choice-affluent spaces appear to 

be quite successful in providing these opportunities. 

This study provides a method for analysing classroom video of problem-solving 

activity. The gaze-dialogue transcript honours what an observer would see in the 

classroom. Short of actually watching the video or observing the classroom live, the 

gaze-dialogue transcript tells the story of the problem-solving episodes by not only 

describing the written work of the students, but also their actions, attentions, and 

directions of their gazes. This type of transcript codifies everything that is observed in a 

concise and analytical form that allows for future analysis and discussion of the actions 

that transpired. 

This study falls short in a few areas. The distinction between accessing individual 

resources and group resources is blurred. This could be remedied in future studies by 

interviewing students shortly after the problem-solving episode to distinguish between 

these two different kinds of resources being used. Another shortcoming is with the 

quality of the video data. Unfortunately, due to the technology used, the audio recording 

of the student dialogue was difficult (sometimes impossible) to discern. With better audio 

recording, the gaze-dialogue transcript can be more detailed, and subtleties of intra-

group collaboration may come to light. Lastly, when groups access resources from other 

groups that are not in the video frame, one is not able to see the actual board work that 

is being attended to. This could be improved in future studies, by simultaneously 

recording each and every whiteboard in the room. Obviously, this presents some 

technological challenges, but I believe having access to this data would add some merit 

to the ideas being discussed. 

We know that problem solving is dependent on heuristics, experience, and 

personal resources and that in real life, problem solvers rely not just on their own 

resources but also on external resources: peers, technology, social networks, etc. As 

such, I argue that authentic problem-solving is best learned and practiced in choice-
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affluent environments where the situated solver makes shifts of attention within spaces 

that afford an abundance of choice for engagement. I present here an opportunity to 

envision what this might look like in practice. In Thinking Classrooms, students have 

been observed access resources from many different sources when their group’s 

resources are diminishing. Thinking classrooms provide one potential model that 

demonstrates choice-affluent environments for students to exercise and build their 

problem-solving resource repertoire. 

Reflections 
 Writing this dissertation is a process that has taken more than three years. Over 

this time, I have become aware of aspects of my own classroom and teaching that are 

not directly related to my research questions, but I thought the reader might appreciate 

me sharing these learnings, nonetheless. I will break this reflection into three categories: 

1. What I have learned about Thinking Classrooms. 

2. What I have learned as a teacher. 

3. What I have learned as a researcher. 

What I have learned about Thinking Classrooms. 
 After studying hours upon hours of classroom video data, I have learned a few 

things about the Thinking Classroom framework. In a high functioning class, students do 

quite well with pushing out resources, and in all Thinking Classrooms there exist 

students who are off-task.  

 I knew that there were times, in Thinking Classrooms, where students were 

supporting other students, but I did not expect this behaviour to be so prevalent. There 

were so many examples in the video data of students supporting other students within 

their group and outside of their group. I mentioned it in the summary analysis of lesson 1 

as a “pushing out of resources,” but this action was observed in other classroom video 

as well (not included in the data). It appears that there is a responsibility observed 

amongst students in Thinking Classrooms to support their peers in their learning. I knew 

this was happening, but I was not expecting it to be so common. 

 Another observation made was not so positive – there is a lot of off task 

behaviour in the video data. Off task behaviour shows itself in primarily two ways. Any 

student in any group was observed to be off-task a variety of times during the task. This 
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off-task behaviour included, but is not limited to, checking their phones, chatting with 

another student, getting a drink or something to eat, etc… In this first description, these 

students would be off-task for a short time, and it seemed inconsequential, possibly even 

beneficial, to their progress in solving the problem.  

There was another type of off-task behaviour observed in most of the video data, 

and this is the student who appears to never be on task. In each of the two videos 

selected, these off-task students were not part of the three study groups, but I could see 

them in the periphery of the video. Moreover, in all of the additional video footage that 

was not included in the analysis, there were many examples of these students. These 

students are either sitting at their tables or standing at their whiteboards and they are 

completely engrossed in their smartphone or they are engaged in a non-content 

conversation with another student. As a teacher in these classrooms, I was aware that 

this behaviour was present, but I was not aware that it was so prevalent. Unfortunately, it 

is a necessary by-product of providing students so much autonomy in a Thinking 

Classroom.  

Typically, when I see this type of distraction in a classroom, I do attend to it, but 

often times it may go unnoticed. While watching the many hours of video data, I did see 

myself attend to some of these students, but I saw many more examples that went 

unnoticed. I do think that, in any group of 30 teenage students, there will often be 

students who choose not to participate productively in the activities of the lesson. But 

with the freedoms provided in a Thinking Classroom, these behaviours may be 

exacerbated and difficult for some teachers to cope with. 

What I have learned as a teacher. 
Over the past three years, I have become more aware of the lack of direct control 

I have over my student’s progress in problem solving and, more generally, over their 

learning. At first, this revelation was frightening, but, over time, I have found it to be a 

release from the high-pressure expectation for student learning and the personal 

responsibility that is associated with this expectation.  

I have a science background and a scientific approach to life. By this I mean that 

I believe in cause and effect and that once a system is well understood, predictions can 

be made effectively. This belief was buoyed by my love for mathematics and my 
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experience as a teacher of mathematics. I found that the more familiar I became with 

mathematical content the more capable I became as a problem-solver and a doer of 

mathematics. Applying this to teaching, I believed that the more I knew about how a 

student and how a class learns, the better I would be able to teach. It feels like a rather 

simplistic view now with the benefit of hindsight, but I truly thought that I could manage 

each student’s learning by implementing an appropriate cause into the system. 

The foundations for this belief were rocked over the course of my analysis of the 

classroom video. I came into this with an expectation for how students would navigate 

their problem solving (see chapter three). I expected it to fall quite readily into a flow-

chart of stages culminating in a problem solved, a happy student, and an increase in 

personal resources. Although this clean progression was observed within the data, it 

was not the norm. Most students made progress through their problems in a more 

haphazard approach. Some would search for resources when needed, some would not. 

Some would scan for resources even when they did not appear to require any. The flow-

chart for solving problems was rarely followed from beginning to end; and yet, problems 

were being solved. 

Through this, I learned that student progress in a choice-affluent space simply 

happens. Any attempt to cause it, predict it, or manipulate it does not necessarily have 

the desired effect. This was quite alarming at first. In becoming more aware of the lack of 

direct control I have on my student learning; I began to wonder what role I do have as 

the teacher in the room. It was alarming because it was pushing up against my 

previously held beliefs of teaching. Perhaps effective teaching doesn’t come from the 

perfectly planned lesson, or the perfectly managed class, or the perfectly orchestrated 

discussion. Perhaps teaching is messier than this.  

I cannot say that I have it all figured out, but I realize now that the role of the 

teacher is in setting up the classroom to increase the potential for emergence. I find this 

encouraging, because learning does not result directly from my well-laid plans, nor is it 

ruined by my mistakes or missteps. Learning will occur when students are immersed in a 

quality task, in a choice-affluent space, and in a community where they feel safe to share 

ideas and take ideas from others. So, my role as an educator is more of a periphery role. 

I need to set the sequence of tasks for an intended learning goal, and I need to monitor 

and encourage student progress as they navigate their own trajectories towards the 
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learning goal. My role is that of an organizing agent in the complex environment of a 

Thinking Classroom. 

What I have learned as a researcher. 
 The biggest learning that I take away from this project as a researcher is that 

research takes time. I came into this study with some early expectations as to what 

might result, and for a large part of my data collection, transcription, and early analysis, I 

was trying to fit my results into my expectations. I even had a significant portion of this 

dissertation written to align with these early expectations, but it just didn’t feel right. I am 

grateful for the iterative process of submitting drafts and receiving feedback, because all 

of this takes time. I believe it was a combination of the time wrestling with the results and 

discussing the feedback I was given that can be credited to shifting my results for this 

study away from my expectations. 

 I believe that the conditions for complexity in writing a dissertation has a lot in 

common with conditions for complexity in choice-affluent classrooms. Over time, I valued 

the many interactions I had with peers in my program, professors in my course work, 

and my advisors for this dissertation, not to mention the interactions with the literature 

that I came across. I was working alongside students with similar interests but a variety 

of backgrounds and experiences. Lastly, the doctoral program at Simon Fraser 

University thrives on de-centralized control, as each student is provided with autonomy 

in choosing an area of study, in choosing a question to investigate, in selecting a method 

for the study, and in deciding the timeline for the dissertation. Because of these 

conditions, much like the group work in my Thinking Classroom, the results for this study 

emerged over time and through collaboration with my peers and advisors. 
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