students.

Schifter and Fosnot (1993, p. 9)

tis a commonly accepted goal among mathematics edu-

cators that students should understand mathematics

(Hiebert & Carpenter, 1992; Pirie & Kieren, 1992, 1994).
The most widely accepied theory, known as constructivism,
suggests that children must be active participants in the
development of their own understanding. Constructivism
provides us with insights concerning how children leam
mathematics and guides us to use instructional strategies that
begin with children rather than with ourselves. In the view
of many educators and researchers, this theoretical perspec-
tive has becorre, in the past 10 years, the "watchword” for
good teaching (Pirie & Kieren, 1992).

. Gonstructivism is firmly rooted in the cognitive schoot of
psy;ho_logy and the theories of Piaget, dating back at least
as far as 1960. This view of learning rejects the notion
-that'}:_lﬁld;en are blank slates who absorb ideas as teach-
A___errs_'_p_rgsi):nt them. Rather, the belief is that children are
 creators.of their own knowledge.

struct or give meaning to things they p

&n; butall people, all 'of the time; con-

P

to them. You are constructing ideas. :

To construct or build something in the physical
world requires tools, materials, and effort. How we con-
struct ideas can be viewed in an analogous manner. The
tools we use to build undeérstanding are our existing
ideas, the knowledge that we already possess. The mate-
rials we act on to build understanding may be things we
see, hear, or touch—elements of our physical surround-
ings. Sometimes the materials are our own thoughts and
ideas. The effort that must be supplied is active and reftec-
tive thought. If minds are not actively thinking, nothing
happens (Janvier, 1987; Schroeder & Lester, 1989).

The diagram in Figure 3.1 is meanut as a metaphor for
the construction of ideas. Consider the picture to be a
small section of our cognitive makeup. The blue dots rep-
resent existing ideas. The lines joining the ideas represent
our logical cennections, or relationships that have devel-
oped between and among ideas. The red dot is an emerg-
ing idea, one that is being constructed. Whatever existing -
ideas (dots) are used in the construction will necessarily
be connected to the new idea because those were the
ideas that gave meaning to it. If a potentially relevant idea
that would add better meaning to the new idea is either
not present in the learners mind or is not actively
engaged, then that potenitial connection to the new idea
simply wilt not be made. Obviously, learners will vary in
the number of connections between a new idea and exist-
ing ideas. Different learners will use different ideas to give

7 7 o etceive or think =
- about.’A$ you read these words, you are giving meaning
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- FEGHURE 3.} We use the ideas we already have (blue dots) to
construct 3 new idea (red dot), developing in the process a
network of connections between ideas. The more ideas used
and the more connections made, the better we understand.

'meaning to the same new idea. What is significant is that
the construction of an idea is almost certainly going to be
different for every learner, even within the same environ-
ment or classroom.

Constructing knowledge is an extremely active
endeavour on the part of the learner (Pirle & Kieren, 1992,
von Glasersfeld, 1990). To construct and understand a new

- 15¢:9z10 ]
.-’T"f:f _f_’r ch
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Myka's Solution

Developing Understanding in Mathematics

idea requires actively thinking about it. “How does this idea
fit with what I already know?” “How can [ understand this
idea in the face of what I currently understand about it?"
Mathematical ideas cannot be “poured into” a passive
learner. Children must be mentally active for learning to
take place. In classrooms, children must be encouraged to
wrestle with new ideas, to work at fitting them into exist-
ing networks, and to challenge their own ideas and those
of others. Put simply, constructing knowledge requires
reflective thought—actively thinking about or mentally
working on an idea. Reflective thought means silting
through existing ideas in order to find those that seem to be
the most useful in giving meaning to the new idea.

Integrated networks, or cognitive schemas, are both the
product of constructing knowledge and the tools with
which additional new knowledge can be constructed. As
learning occurs, the networks are rearranged, added to, or
otherwise modified. When there is active, reflective
thought, schemas are constantly being modified or
changed so that ideas fit better with what is already
known. :

Examples of Constructed Learning

Consider the solution methods of two grade 4 children
from schools where a highly constructivist approach to
mathematics had been in place for several years. The
“dots” these children had at their disposal included the
meanings of the basic operations and a good understand-
ing of place-value concepts. They were asked to solve the
following problem: “Four children had 3 bags of M&Ms.
They decided to open all 3 bags of candy and share the
M&Ms fairly. There were 52 M&M candies in each bag.
How many M&M candies did each child get?” (Campbell
& Johnson, 1995, pp. 35-36). Their solutions are shown
in Figure 3.2.

Both children were able to determine the product 3 x 52
mentally The two children used different cognitive tools to

FIGURE 3.2 Two grade 4 chil-

dren construct unique solutions

2 <l(" . to a computation.

Source: Campbell & Johnsan (1995).
x 52 Used with permission.
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Harjit's Solution
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solve the problem of 156 + 4. Myka interpreted the task as
“How many sets of 4 can be made from 156" She first
used facts that were either easy or available to her: 10 x 4
and 4 x 4. These totals she subtracted from 156 uniil she
arrived at 100. This seemed to cue her to use 25 fours.
Myka did not hesitate t¢ add the number of sets of 4 that
she found in 156 and knew the answer was 39 candies for
each child.
Harjits approach was more directly related to the
sharing context of the problem. He formed four columns
and distributed amounts to each, accumulating the
amounts mentally and orally as he wrote the numbers.
Like Myka, Harjit used numbers that were either easy or
available to him; first 20 to each, then 5, then 10, and then
a series of ones. He added one of the columns without hes-
itation (Rowan, 1995).
If computational speed and proficiency were your
goal, you might be tempted to argue that the children need
further instruction. However, both children clearly con-
structed ideas about the computation that had meaning for
them. They demonstrated confidence, understanding, and
a belief that they could solve the problem.
In contrast to these two children, consider a grade 3
child in a traditional classroom. She has made a quite com-
mon error in subtraction, as shown in Figure 3.3. The
class had been doing subtraction with “borrowing,” more

, appropriately known as trading or regrouping, and the

| problem appeared on a mathematics worksheet. The con-

: text narrowed the choices of ways to give meaning to the
situation (the “dots” she would likely use). But this prob-
lem was a little different from the childs existing ideas
about “borrowing.” The next column contained a 0. How
could she take 1 from the 07 That part was different, cre-
ating a situation that for her was problematic. The child
decided that “the next column” must mean the next one
that has something in it. She therefore believed that she
had to “borrow” from the 6 and ignore the 0. The child
used her existing ideas 1o give her own meaning to the rule
“borrow from the next column.”

603
—-257
6

There is nothing in this
next colbmn, so I'lt
borrow from the 6.

FIGURE 3.3 children sometimes invent incorrect meanings
by extending poorly understood rules.

Children rarely give random responses (Ginsburg,
1977, Labinowicz, 19853). Their answers tend to make
sense in terms of their personal perspective or in terms of
the knowledge they are using to give meaning to the situ-
ation. In many instances, children’s existing knowledge is
incomplete or inaccurate, or perhaps the knowledge we
assume to be there simply is not. In such situations, as in
the present example, new knowledge may be constructed
inaccurately. '

Construction in Rote Learning

Constructivism is a theory about how we learn. If it is cor-
rect, then it describes how all learning takes place, regard-
less of how we teach. We cannot choose to have children
learn constructively on some days and not others. Even
rote learning is a construction. But what tools or ideas are
used for construction in rote learning? To what is knowl- l %
edge learned by rote connected? '
Children searching for a way to remember 7 X 8 = 56

. might note that the numbers 5, 6 and 7, 8 go in order. Or

they may connect the number 56 to that “hard fact” since
56 is unique in the multiplication table. (But then so is
54.) Repetition of a routine procedure may be connected
to some mantra-type recitation of the rule, as in “Divide,
multiply, subtract, and bring down.” This sequence has
even been related to the mnemonic “Ditty monkeys smell
bad.” New ideas learned like this are not connected to any-
thing that can be called mathematical. Nor are they part of
networks of ideas. Each newly learned bit is essentially iso-
lated. Rote knowledge will almost never contribute to a
useful network of ideas. Rote learning can be thought of as
a “weak construction” (Noddings, 1993).

When mathematical ideas are used to create new
mathematical ideas, useful cognitive networks are formed,
Returning to 7 x 8, imagine a class where children discuss
and share clever ways to figure out the product. One child
might think of 5 eights and then 2 more eights. Another
may have leamed 7 X 7 and noted that this is just one
more seven. Still another might look at a list of 8 sevens
and take half of them (4 x 7) and double that. This may
lead to the nation that double 7 is 14, and double that is
28, and double that is 56. Not every child will construct
7 % 8 using all of these approaches. However, the class dis-
cussion brings to the fore a wide range of useful mathe-
matical “dots” so that the potential is there for profitable
constructions.

Understanding

It is possible to say that we know something, but we
might not necessarily understand it. Knowledge is some-
thing that we either have or dont have. Understanding is
another matter. For example, how did you learn 7 x 87 If
you learned it by rote, as most adults did, you may never
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have thought about the other ideas just discussed. Is
Eiyour understanding of 7 % 8 just the same as that of a
person who has connected some of these other ideas to
that fact? ‘ '

Understanding is never an all-or-nothing proposition.
It depends on the existence of apprepriate ideas and on
the creation of new connections (Backhouse, Haggarty,
Pirie & Stratton, 1992; Hiebert & Carpenter, 1992). It can
be defined as a measure of the quality and quantity of con-
nections that a new idea has with existing ideas.

One way we can think about an individuals under-
standing is to imagine it along a continuum (see Figure
3.4}. At one extreme is a very rich set of connections. The
understood idea is associated with many other existing
ideas in a meaningful network of concepts and proce-
dures. Hiebert and Carpenter (1992) refer 10 "webs” of
interrelated ideas. Understanding at this rich interconnect-
ed end of the continuum will be referred to as relational
understanding, borrowing a term made popular by Skemp
{1978). At the other end of the continuum, ideas are large-
ly or completely isolated. At this end, we have what we
will call instrumental understanding, again borrowing from
Skemp. Knowledge that is learned by rote is almost always
understood instrumentally. ,

Examples of Understanding

If we accept the notion that understanding has both qual-
itative and quantitative differences, the question "Does she
know i1?” must be replaced with “How does she under-
stand it? What ideas does she connect with it?” In the fol-
lowing examples, you will see how different children may
well develop varied ideas about the same concept and thus
have dissimilar understandings.

Computation in Two Classrooms

Schifter and Fosnot (1993} describe a grade 3 class where
several children are discussing the problem of sharing 90
jelly beans among four children. They decide to use base-
ten modets (ones and tens). They distribute 2 tens to each
group and trade a ten for 10 ones.

Next, they distribute 2 ones to each group. Then,
there is a discussion of what to do with the 2 leftover ones
and how to write down what they have done. One child
suggests “223" and another “22 R 2." They decide that the

Relational
Understanding

Continuum of Understanding

best answer for any division depends on the situation and
what you want to do with the leftovers.

In a more traditional class, another grade 3 student
was quite confident in her ability to do long divisions such
as 24 682 + 5. When asked what the “R 2" meant when she
computed 32 + 5, she could only identify 2 as the remain-
der. Asked to demonstrate 32 + 5 with the base ten blocks,
she began but then decided it couldn’t be done. The child
was at a loss to explain “R 2" in terms of the leftover coun-
ters (Schifter & Fosnot, 1993). These children all have dif-
ferent understandings of division, Some are very rich
understandings; some are very limited.

Connections with Early Number Concepts

Consider the concept of “seven” as constructed by a child in
grade 1. Seven for a first grader is most likely connected to the
counting procedure and the construct of “more than” and is
probably understood as less than 10 and more than 2. What
else will this child eventually connect to the concept of seven
as it now exists? Seven is 1 more than 6; it includes those
numbers less than itself; it is 2 less than 9; it is the combina-
tion of 3 and 4 or 2 and 5; it is odd; it is small compared to
73; it is the nurmber of days in 2 week; and so on. The web of
ideas connected to a number can grow large and involved,
depending on the level of the childs understanding.

~ A Web of Ideas Involving Ratio

A clear example of the potential for rich relational under-
standing is found in the many ideas that can be associated
with the concept of “ratio” (see Figure 3.5). Unfortunately,
many children learn only meaningless rules conmected
with ratio, such as, “Given one ratio, how do you find an
equivalent ratic?”

Benefits of Relational Understanding

To teach for a rich or relational understanding requires a
lot of work and effort. Concepts and connections develop
over time, not in a day Tasks must be selected.
Instructional materials must be made. The classroom
needs to be organized for group work and maximum inter-
action with and among the children. The important bene-
fits to be derived from relational understanding make the
effort not just worthwhile, but essential.

FIGURE 3.4 Understandingis a
measure of the quality and
quantity of connections that a
new idea has with existing ideas.
The greater the number of con-
nections to a network of ideas,
the better the understanding.

Instrumenta!
Understanding
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EIGURE 3.5 Potential web of
associations that could contribute !
to the understanding of “ratio” L
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It Is Intrinsically Rewarding

Nearly all people, and certainly children, enjoy learning,

This is especially true when new information connects -

with ideas already possessed. The new knowledge makes
sense, it fits; it feels good. Children who learn by rote must
be motivated by external means: for the sake of a test, to
please a parent, from fear of failure, or to receive some
reward. Such learning is distasteful. Rewards of an extra
Tecess or a star on a chart may be eflective in the short run
but do nothing to encourage a love of the subject when the
Tewards are removed.

It Enhances Memory

Memory is a process of retrieving information., When
learning in mathematics establishes a rich set of connec-
tions, there is much less chance that the information will
deteriorate; connected information is more likely than dis-
connected information to be retained over time. It is also
easier to retrieve, Connected information provides an

\ entire web of ideas for which a learner can reach. If what

I you need to recall seems distant, reflecting on related ideas

{ will, in most instances, eventually lead to the desired idea.

'Attempting to retrieve disconnected information is more
like looking for a needle in a haystack.

A large portion of instructional time in schools is
devoted to rte-teaching and review. If teaching focused
more on developing relational rather than instrumental
understanding, much less review time would be needed.

There Is Less to Remember

Traditional approaches have tended to fragment mathemat-
ies into seemingly endless lists of isolated skills, concepts,
rules, and symbols. The lists are so lengthy that teachers and
students become overwhelmed. Constructivists, for their

Bﬁ'sine_s.s: _P}c;f{; ,a"n_t-::‘ loss ére’_’
figured as ratios of income to '
dotal cost, < e Al

part, talk about teaching “big ideas” (Brooks & Brooks,
1993; Hiebert et al., 1996; Schifter & Fosnot, 1993). Big
ideas are really just large networks of interrelated concepts.
Ideas are leamned relationally when they are integrated into
a larger web of information, a big idea. Frequently, the net-
work is so well constructed that whole chunks of informa-
tion are stored and retrieved as single entities rather than
isolated bits. For example, knowledge of place value sub-

' sumes rules about lining up decimal points, ordering deci-

mal numbers, moving decimal points to the right or left in
decimal-percent conversions, rounding and estimating, and
a host of other ideas. Similarly, knowledge of equivalent
fractions ties together rules concerning common denomina-
tors, reducing fractions, and changing between mixed num-
bers and whole numbers.

It Helps with Learning New Concepts and
Procedures :

An idea fully understood in mathematics is easily extended
when a new idea is learned. Understanding of number con-
cepts and relationships helps with mastery of basic facts.
Fraction knowledge and place-value knowledge come
together to make decimal learning easier, and decimal con-
cepts directly enhance an understanding of percentage con-
cepts and procedures. Many of the ideas of elementary
arithmetic become the model for understanding ideas in
algebra. Reducing fractions by finding common prime fac-
tors is the same thing as dividing out common factors.

Without these connections, children will need to
learn each new piece of information they encounter as a
separate, unrelated idea.

It Improves Problem-Solving Abilities

The solution of novel problems requires transferring ideas
learned in one context to new situations. When concepls
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 are embedded in a rich newwork, transferability is signifi-
cantly enhanced and, thus, so is problem solving
(Schoenfeld, 1992). The most recent resuits of the School
Achievement Indicators Program (SAIP) for mathematics,
the third assessment of its type, demonstrated that signifi-
cantly more 13-yearold Canadian students improved
{compared to results of the previous assessment) in prob-
lem solving, as well as in mathematics content. 1t is sug-
gested that exposure to reform-oriented curricula, with
their emphasis on understanding, may have played a role
in students’ jmprovement (Council of Ministers of
Education, 2001).

itls Self—Generativé

“Inventions that operate on understandings can generate
new understandings, suggesting a kind of snowball effect.
As networks grow and become more structured, they
increase the potential for invention” (Hiebert & Carpenter,
1992, p. 74). Skemp (1978) noted that when gaining
knowledge is found to be pleasurable, people who have
had that experience of pleasure are likely to seek or invent
new ideas on their own, especially when confronting prob-
lematic situations.

It Improves Attitudes and Beliefs

Relational understanding has an affective as well as a
cognitive effect on the learner. When relational learning
occurs, the learner tends to be more positive about his
or her ability to learn and understand mathematics.
There is a definite sense of "I can do this! | understand!”
There is no reason to fear or be in awe of knowledge
learned relationally. Mathematics then makes sense. It is
not some mysterious world that only “smart people”
dare to enter. At the other end of the continuum,
instrumental understanding may produce mathematics
anxiety, a real phenomenon that involves fear and avoid-
ance behaviour.

Relational understanding also promotes a positive
view of mathematics itself. Sensing the connectedness
and logic of mathematics, students are more likely to
gravitate toward it or to describe the d15<:1plme in posi-
live terms.

All knowledge, mathematical or otherwise, consists of
internal or mental representations of ideas that the mind
“as constructed. For some time now, mathematics educa-
tors have found it useful to distinguish between two types
of mathematical knowledge: conceptual knowledge and
procedural knowledge (Hiebert & Lindquist, 1990).

Conceptual Knowledge of

‘Mathematics

Conceptual knowledge of mathematics consists of logical rela-
tionships constructed internally and existing in the mind
as a part of a network of ideas. 1t is the type of knowledge
Piaget referred to as logico-mathematical knowledge
(Kamnii, 1985, 1989; Labinowicz, 1985). By its very
nature, conceptual knowledge is knowledge that is under-
stood (Hiebert & Carpenter, 1992).

Ideas such as seven, rectangle, ones/tenshundreds {as
in place value), sum, product, equivalent, ratio, and negative
are all examples of mathematical relationships or concepts.

Figure 3.6 shows three different types of Dienes’ Base-
Ten Multibase Arithmetic Blocks, commonly used to rep-
resent’ ones, tens, and hundreds. (The blocks were
designed by Zoltan Dienes, a mathematics educator whose
experience extends to a number of Canadian provinges.)
By the middle of grade 2, most children have seen pic-
tures of these or have used the actual blocks. It is quite
common for these children to be able to identify the rod as
the “ten” piece and the large square block, the flat, as the
“hundred” piece. Does this mean that they have construct-
ed the concepts of ten and a hundred? All that is known
for sure is that they have learned the names for these
objects, the conventional names of the base ten blocks.
The mathematical concept of a ten is that a ten is the same
as ten ones. Ten is not a rod. The concept is the relationship
between the rod and the small cube. It is not the rod or a
bundle of ten sticks or any other model of a ten. 1t is this
relationship called “ten” that children must create in their
own minds.

Names Models Relationships

{ | '

“One” @ Tenones .
Z V. pr :_is thﬁ[same as *

Ten'— (T T T L1 [ ] WD “one en™ - -

*Hundred"—» - Ten ‘tens”

is the same as
" ohe "hundred™- -

FIGURE 3.6 Objects and names of objects are not the same
as relationships between objects.
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FIGURE 3.7 Three shapes, different relationships.

In Figure 3.7, the shape labelied A is a rectangle. But
if we call shape B “one” or a “whole,” then we might refer
to shape A as “one-half.” The idea of “half" is the relation-
ship between shapes A and B, a relationship that must be
constructed in our mind. It is not in either rectangle. In
fact, if we decide to call shape C the whole, shape A
becomes “one-fourth.” The actual rectangle did not change

in any way. The concepts of “hall” and “fourth” are not in
' rectangle A; we construct them in our mind. The rectan-
" gles help us “see” the relationships, but what we see are
rectangles, not concepts.

Procedural Knowledge of
Mathematics

 Procedural knowledge of mathematics is knowledge of the
rules and the procedures that one uses in carrying out
routine mathematical tasks, and of the symbolism that is
used to represent mathematics. Knowledge of mathemat-
ics consists of more than concepts. Step-by-step proce-
dures exist for performing tasks such as multiplying
47 x 68. Concepts are represented by special words and
mathematical symbols. These procedures and symbols
can be connected to or supported by concepts, but very
few cognitive relationships are needed to have knowl-
edge of a procedure.

Procedures are the step-by-step routines learned to
accomplish a task. “To add two three-digit numbers, first
add the numbers in the right-hand column. If the answer
is 10 or more, put the 1 above the second column, and
write the other digit under the first column. Proceed in a
similar manner for the next two columns in order.” We can
say that someone who can accomplish a task such as this
has knowledge of that procedure. Again, the conceptual
understanding that may or may not support this proce-
dural knowledge can vary considerably from one student
to the next.

Some procedures are very simple and may even be
confused with conceptual knowledge. For example, grade
7 children may be shown how to add the integers 7 and
™4 by combining 7 red “negative” counters with 4 yellow
“positive” counters. Pairs consisting of 1 red and 1 yellow
counter are removed, and the result is noted. In this exam-
ple, there would be 3 red negative counters Tremaining,

4|

and the students would record “3 as the sum. This might
be called a manipulative or physical procedure. Notice
that it is conceivable that a student could master a proce-
dure such as this with very little understanding, or it could
be integrated with a conceptual web related to integers
and thus be well understood.

Symbolism includes expressions such as (9 - 5)x 2 = 8,
W, £, 2, and #. The meaning attached to this symbolic
knowledge depends on how it is understood—what con-
cepts and other ideas the individual connects to the sym-
bols. Symbolism is part of procedural knowledge, whether
it is understood or not,

Procedural Knowledge and Doing
Mathematics

Procedural knowledge of mathematics plays a very impor-
tant tole both in learning and in doing mathematics.
Algorithmic procedures help us do rautine tasks easily and
thus free our minds to concentrate on more important
tasks. Symbolism is a powerful mechanism for conveying
mathematical ideas to others and for “doodling around”
with an idea as we do mathematics. But even the most
skillful use of a procedure will not help develop concep-
tual knowledge that is related to that procedure (Hiebert,
1990). Doing endless long-division exercises will not help
a child understand the meaning of division. In fact, stu-
dents who become skillful with a particular procedure are
very reluctant, after the fact, to attach meaning to it.

From the perspective of learning mathematics, the
question of how procedures and conceptual ideas can be
linked is much more important than the usefulness of the
procedure itself (Hiebert & Carpenter, 1992). Recall the
two children who used their own invented procedure to
solve 156 + 4 (see Figure 3.2, p. 29). Clearly, there was an
active and useful interaction between the procedures the
children invented and the ideas they were constructing
about division,

It is generally accepted that procedural rules should
never be learned in the absence of a concept.
Unfortunately, that happens far too often.

It has become a clich¢ that good teachers use a “hands-on”
approach to teach mathematics. Manipulatives, or physical
materials used to model mathematical concepts, are cer-
tainly important tools available for helping children learn
mathematics. But they are not the panacea that some edu-
cators seem 10 believe them to be. It is important that you
have the appropriate perspective on how manipulatives
can help or fail to help children construct ideas.
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Models for Mathematical Concepts

Return for a moment to the idea of a mathematical concept
as a relationship, a logical idea. There are no physical
embodiments of mathematical concepts in the physical
world. The concept of “hundred,” for example, is a quan-
tity relationship that exists between a group of 100 items
and a single item of the same type. We can talk of 100
people, 100 dollars, or 100 acts of kindness. None of those
sets is a hundred. Hundred is only a relationship that the
group has with one thing like those in the group. It is
impossible to imagine “hundred” without first under-
standing “one.”

A model for a mathematical concept refers to any object,
picture, or drawing that represents the concept, or onto
which the relationship for that concept can be imposed. In
this sense, any group of 100 objects can be a model of the
concept “hundred” because we can impose the 100-to-1

relationship on the group, and on a single element of the

group.

K/Q

Countable cbjects can be used to'model “number”
and related ideas such as “one more than.”

(a)

k is incorrect to say that a model “illustrates” a con-
cept. To illustrate implies showing. That would mean that
when you look at the model, you would see an example of
the concept. Technically, all that you actually see with your
eyes is the object; only your mind can impose the mathe-
matical relationship on the object (Thompson, 1994). 1f a ]
person does not yet possess the relationship, the model
does not illustrate the concept for that person.

Examples of Models

As noted, physical materials have become enormousty pop-
ular as tools for teaching mathematics. They can run the
gamut from common objects, such as lima beans for coun-
ters, o commercially produced matenials, such as wooden
rods or plastic geometric shapes. Figure 3.8 shows six com-
mon examples of models for six diflerent concepts. Consider
each of the concepts and the corresponding model. Try to
separate the physical medel from the relationship that you
must impose o1 it in order to “see” the concept.

]

Base-ten concepts (ones, tens, hundreds) are
frequently modelled with strips and squares. .

Sticks and bundles of sticks are also commonly used.

(d)

“Length” involves a comparison of the length
attribute of different objects. Rods can be
used to measure length.

(b)

“Chance” can be modelled by comparing outcomes
of a spinner.

(e)

“Rectangles” can be modelled on a dot grid. They -
involve length and spatial relationships.

(c)

i
<y
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“Posilive™ and “negative” integers can be modelled with
arrows with different lengths and directions.

(f}

FIGURE 3.8 Examples of models to illustrate mathematics concepts.
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For the examples in Figure 3.8:

(a) The concept of “six” is a relationship between sets
that can be matched to the words one, two, three, Jour,
five, six. Changing a set of counters by adding one
alters the relationship. The difference between the
set of 6 and the set of 7 is the relationship of “one
more than.”

The concept of “length” could not be developed

without making comparisons of the length attribute

of different objects. The length measure of an object
is a comparison relationship between the length of
the object and the length of the unit.

(¢) The concept of “rectangle” is a combination of spatial
and length relationships. By drawing on dot paper,
the relationships of opposite sides that are equal in
length and parallel, and the adjacent sides’ meeting
at right angles, can be illustrated.

(d) The concept of “hundred” is not in the larger square
but in the relationship of that square to the surip -
(“ten”) and to the little square (“one").

(e) “Chance” is a relationship between the frequency of
an‘event’s occurrence compared with all possible
outcomes. The spinner can be used to create relative
frequencies. These can be predicted by observing
relationships of sectors of the spinner. Note how
chance and probability are integrated with ideas of
fractions and ratio.

(£ The concept of a “negative integer” is based on the

‘ relationship “is the opposite of.” Negative quantities

exist only in relation to positive quantities. Arrows on

the number line are not themselves negative quantities
but model the “opposite of” relationship in terms of
direction and size, or magnitude in terms of length.

(b

—

Staying with integers for a moment, this concept is
often modelled with counters in two colours, perhaps red
for negative quantities and yellow for positive. The "oppo-
site” aspect of integers can be imposed on the two colours.
The “magnitude” aspect is found in the quantities of red
and yellow counters. Although coloured counters and
arrows are physically very different, the same relationships
can be imposed on each. Children must construct rela-
tionships in order to "see” positive and negative integers in
either model.

It is important to include calculators in any list of
common models. The calculator models a wide variety of
numerical retationships by quickly and easily demonstrat-
ing the effects of these ideas. For example, if the calculator
is made to count by increments of 0.01 (press & 0.01 &),
the relationship of one-hundredth to one whole is illus-
trated. Press 3 0.01. How many presses of are
required to get from 3 to 4? Doing the required 100 press-
es and observing how the display changes along the way is
quite impressive, Especially note what happens after 3.19,
3.29, and so on.

Models and Constructing Mathematics

In order to "see” in a model the concept that it represents,

you must aiready have that concept—that relationship—

_in your mind. If you do not, then you would have no rela-

uonslup to impose on the model. This is precisely why
i models are often more meaningful to the teacher than to
i | the students. The teacher already has the concept and can

“see it in the model. A student without the concept sees
i only the physical object.

Thus a child needs to know the relationship before
imposing it on the model. If the concept does not come
from the model—and it does not—how does the model
help the child get it?

Mathematical concepts that children are in the
process of constructing are not the well-formed ideas con-
ceived by adults, New ideas are formulated little by little
over time. As children actively reflect on their new ideas,
they test them out through as many different avenues as
we might provide. For example, this is where the vatue of
student discussions and group work comes in. Talking
through an idea, arguing for a viewpoint, listening to oth-
ers, and describing and explaining are all mentally active
ways of testing an emerging idea against external reality, As
this testing process goes on, the developing idea gets mod-
ified and elaborated and further integrated with existing
ideas. When there is a good fit with external reality, the
likelihood of a concept being formed correctly is good.

Models can also play the role of a testing ground for
emergmg ideas. They can be thought of as “thinker toys,”

“tester toys,” and “talker toys.” ‘It is difficult for students
(of all ages} to talk about and test out abstract relationships
using words alone. Hence, models give learners something
to think about, explore with, talk about, and reason with.

Expanding the Idea of a Model

Lesh, Post, and Behr (1987) talk about five “representations”
for concepts, two of which are manipulative models and pic-
tures {see Figure 3.9). In their research, they also consider
written symbolism, oral language, and real-world situations
as representations or models of concepts. Their research has
demonstrated that children who have difficulty translating a
concept from one representation to another also have diffi-
culty solving problems and understanding computations.
Strengthening children’ ability to move between and among
these representations improves their conceptual growth.
The five representations illustrated in Figure 3.9 are
simply an expansion of the modet concept. The more ways
that children are given to think about and test out an

*The term thinker toy is taken from Seymour Paperts book Mindstorms
(1980}, in which the inventor of the Logo computer language describes
the computer as a pewerful and flexible device thar encourages learners
to play with ideas and work through problems. "Tester toys” and “talker
toys” were suggested in the current context by Laura Domalik, a grade 1
teacher.
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FEGURE 3.9 Five different representations of mathematical
ideas. Translations between and within each can help
develop new concepts.

emerging idea, the better chance the idea has of being
formed correctly and integrated into a rich web of ideas
and relational understanding.

Using Models in the Classroom

If we think of models as thinker toys or talker toys, we can
identify three related uses for them .in a developmentat
approach to teaching; :

1. To help children develop new concepts or relationships
2. To help children make connections between con-
cepts and symbols
\ 3. To help educators assess children’s understanding

Developing New Concepts

Models help children as they think and reflect on new
ideas. Students should be encouraged to select and use
materials to help them work through a problem or explain
an idea to their group. To that end, a variety of models
should be available to students so that they may use them
freely when thinking through an important idea. Students
should be free to select those models that make sense to
them and not be forced 10 use a particular model.

You will undoubtedly encounter situations in which
you use a model that you think clearly illustrates an idea,
but the child just doesnt get it. Remember that you
already possess the well-formed concept, so you are able
to impose it on the model. Children are often able to see
connections and relationships between concepts and mod-
els that we as adults miss because of our own well-formed
concepts. Always encourage children to share their ideas
with one another.

.:Ménipu1a'\t'i\fe_?;
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A child in the process of creating a concept may use a
model to test an emerging idea. Your job is to get children
to think with models, to work actively at the test-revise-
test-revise process until the new concept fits with the phys-
ical model you have offered. It is not possible to show
mathematics with models. You can only provide models on
which mathematical relationships or concepts can be
imposed. When the child’s concept fits the model, the child
sees the concept. When the concept does not seem to fit,

‘the child cannot see it in the model. The child’s concept is

different from the one that you impose on the model and
so must undergo further construction or revision.

Connecting Symbols and Cdncepts

Teachers will say, “But when they try to do it withour
manipulatives, they can't.” Yet it is unrealistic to expect
children automatically to transfer newly formed ideas to
symbolic procedures without some guidance. Models can
serve as a link between concepts and symbols as well as a
means for developing concepts.

A general approach is to have students write down how
they have used the models. “Write an equation to tell what
you just did.” “I see how you did that problem with the
blocks. How would you go about recording what you did?”
When children see written mathematics as expressions or
recordings of ideas that they have already developed, the
written or symbolic form is more likely to make sense.

Assessing Children’s Understanding

When children in the classroom use models in ways that
make sense to them (rather than following your direc-
tions), the manner in which they are used provides a
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wonderful window into their minds. Classroom observa-
tion of your students then becomes a student-by-student
assessrment.

If you want more detailed information about the
understanding children have constructed, have them use
manipulative materials to explain their ideas. The models
give children the words they need to express themselves
when abstract ideas prove difficult for them to explain.
This might be done in a diagnostic setting, where you sit
down, one-on-one, with a child and try to find out what
he or she is thinking. Remember that drawings are also
models. When students write explanations for their
answers or describe their ideas in writing, always encour-
age them to draw pictures to help show what they are
thinking, (Assessment is discussed in depth in Chapter 5.)

Incorrect Use of Models

The most widespread misuse of manipulative materials
occurs when the teacher tells students, “Do as 1 do.” There
is a natural temptation to get out the materials and show
children exactly how to use them. Children will blindly
follow the teachers directions, and it may even fool as if
they understand. It is just as possible to get students to
move blocks around mindlessly as it is to teach them to
“invert and multiply” mindlessly. Neither promotes think-
ing or aids in the development of concepts (Ball, 1992;
Clements & Battista, 1990).

A natural result of overly directing the use of models
is that children begin to use them as “answer-getting”
devices rather than as thinker toys. When getting answers
rather than solving problems becomes the focus of a les-
son, children will gravitate to the easiest method available
to get the answers. For example, if you have carefully
shown and explained to children how to get an answer
with a set of counters, then an imitation of that method is
what they will most likely select. By strictly following your
directions, little or no reflective thought will go into
exploring the concepts involved. When an activity is not
reflective, little real growth occurs, and litlle understand-
ing is constructed.

Teaching involves decision-making. Decisions are made
as you plan lessons. What is the best task to propose tomor-
row? Considering what happened today, what will move the
children forward? And decisions are made minute to
minute in the classroom. How should I respond? Should they
struggle some more, or should I intervene? Is progress being
made? How can I help Suzy move in the correct direction with-
out discouraging her?

The ideas that have been discussed in this chapter pro-
vide a theoretical foundation for making those decisions.

Foundations of a Developmental
Approach

Following is a summary of the major implications of the
theory that has been discussed. A teacher who keeps these
ideas in mind can be said to be basing his or her instruc-
tion on a constructivist view of learning or, in the termi-
nology of this book, a developmental approach.

1. Children construct their own knowledge and understand-
ing; we cannot transmit ideas to passive learners. Each
child comes to us with a unique but rich collection
of ideas. These ideas are the tools that will be used
to construct new concepts and procedures as stu-
dents wrestle with ideas, discuss solutions, challenge
their own and others’ conjectures, explain their

_ methods, and solve engaging problems. Ideas
cannot be poured into children as if they were
empty vessels. * '

2. Knowledge and understanding are unique for each learn-
er. Each child’s network of ideas is different from that
of the next child. As new ideas are formed, they will
be integrated into that web of ideas in a unique way
as well. We should not try to make all children the
same, ,

3. Reflective thinking is the single most important ingredient
Jor effective learning. In order to create new ideas and
to connect them in a rich web of interrelated ideas,
children must be mentally engaged. They must find
the relevant ideas they possess and bring them to
bear on the development of new ideas and the solu-
tions to new problems. Only by being mentally
engaged with the task at hand can relational under-
standing of new ideas ever develop. “Passive learn-
ing” is an oxymoron!

4. Effective teaching is a child-centred activity. In a con-

| structivist classroom, the emphasis is on learning

. rather than teaching. Students are given the task of

- learning. The role of the teacher is to engage the stu-

i dens by posing good problems and creating a class-

{ room atmosphere of exploration and sense-making.

| The source of mathematical truth is found in the

: reasoning carried out by the class. The teacher is not.

" the arbiter of what is mathematically correct.

Strategies for Effective Teaching

How can we structure lessons to promote appropriate
reflective thought? Purposeful memtal engagement or
reflective thought about the ideas we want students to
develop is the single most important key to effective teach-
ing. Without active thinking about the important concepts
of the lesson, learning will not happen. How can we make
it happen? Here are seven suggestions based on the per-
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spectives of this chapter. Perhaps you will be able to add
to the list.

Create a mathematical environment.

Pose worthwhile mathermatical 1asks.

Use cooperative learning groups.

Use models and calculators as thinking tools.
Encourage discourse and writing.

Require justification of student responses.
Listen actively.

A e ol a e

Creating a Mathematical Environment

In a mathernatical environment, students feel comfortable
trying out ideas, sharing insights, challenging others, seek-
ing advice from other students and the teacher, explaining
their thinking, and taking risks. No one is permmitted to be
a passive observer. An environment with these features is
built around expectations, respect, and .the belief thart all
children cah learn. Learning takes effort, and children
need to know that as a class, their task is to work at doing
mathematics. The interactions of a mathematical environ-
ment require students and teachers alike to respect one
another, to listent attentively, and to learn to disagree with-
out offending.

We cannot simply tel] children how to think or what
habits to acquire. Processes and habits of thought are
developed over time within a community where such
processes and thinking are the norm. In a community of

mathematical discourse, students evaluate their own -

assumptions.and those of others and argue about what is
mathematically true (Corwin, 1996; Lampert, 1990; Nova
Scotia Department of Education and Culture, 1993).
The goal is to let all students believe that they are the
authors of mathematical ideas and logical arguments. In
this environment, reasoning and mathematical argu-
ment—not the teacher—are the sources of an idea’ legiti-
macy. "Doing mathematics is an act of sense-making”
(Schoenfeld, 1994, p. 60). The classroom environment
should be a place where figuring it out and “sense-making”
are common practices, not just for individuals, but for the
class as a whole.

In an urban school in Monireal, a class of grade 5
students was observed during a discussion about the
meaning of area. As one child wrote on the blackboard,
“area is P = 1 x w =2 + 2," another said, “T disagree with
Andre. I think area is something different.” Another child
commented, “I would like to add to what Marcel just said.”
All studenis faced the speaker and listened attentively as
he spoke. In another classroom nearby, grade 2 students
raised their hands with their index finger pointing up to
indicate “a point of interest,” a polite way to disagree, In
both classrooms, it was clear that teachers had spent time
and effort developing this atmosphere of respect. “Creating
contexts where students can safely express their own

mathematical ideas is a central teaching task and a step
toward developing students’ mathematical power” (Smith,
1996, p. 397).

Posing Worthwhile Mathematical Tasks

The single most important principle for reform in mathe-
matics is to allow students to make the subject of mathe-
matics problematic (Hiebert et al., 1996). By problematic,
these authors mean “allowing students to wonder why
things are, to inquire, to search for solutions, and to
resolve incongruities. It means that both curriculum and
instruction should begin with problems, dilemmas, and
questions for students” (p. 12). When students are active-
ly looking for relationships, analyzing patterns, finding
out which methods work “and which don't, justifying
results, or evaluating and challenging the thoughts of oth-
ers, they are necessarily and optimally engaging in reflec-
tive thought about the ideas involved.

Tasks or problems must be designed to engage stu-
dents in the concepts of the curriculum. The tasks given a
class should be based on the students’ knowledge of the
mathematical content and an informed guess about the
concepts they bring to the task (Fennema, Carpenter,
Franke, & Carey, 1993; Flewelling & Higginson, 2000;
Simon, 1995). Time must be given to permit students to
wrestle with these tasks individually or in groups and also
to discuss solutions and strategies with the class-as a
whole. ' '

The selection of good tasks requires listening each day
to the way students are thinking about whatever mathe-
matics is currently being discussed. The next day’s task
should be chosen to help students reflect on the new ideas
you want them to develop. Look for explorations that
embody the big ideas of the chapter. As students wrestle
with these problems, the tiny skills and ideas of the tradi-
tional curriculum will emerge. In a good task, students
will “bump into” the important mathematics you have in
mind for them to learn (Lappan & Briars, 1995).

Using Cooperative Learning Groups

Placing children in cooperative groups of three or four to
work on a problem is an extremely useful strategy for
encouraging the discourse and interaction envisioned in a
mathematical community. A classroom arranged in srnall
cooperative groups has much more interaction and discus-
sion going on than can be accomplished in a full-class set-
ting. It also encourages greater accountability on the part of
the students. Frequently, a simple pairing of students is all
that is necessary. In groups or pairs, children are much
more willing and able 10 speak out, explore ideas, explain
things to their peers, question and learn from one another,
pose arguments, and have their own ideas challenged in a
friendly atmosphere of learning. Children are more willing,
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within a small group, to take risks that they would never
dream of taking in front of an entire class. Groups should
usually be heterogeneous in ability so that all students are
exposed to good thinking and reasoning (Bennett,
Rolheiser-Bennett, & Stevahn, 1991).

While the groups are at work, the teacher has the
opportunity to listen actively to six or more different dis-
cussions. Time should always be allotted for full-class dis-
cussions so that group members can share their group’s
ideas and the teacher can focus attention on important
ideas. (See Chapter 21 for a more detailed discussion of
cooperative groups.)

Using Models and Calculators as Thinking
Tools _
The use of models has already been thoroughly dis-

cussed, but it is worth repeating that models help children
as they explore ideas and attempt to make sense of them.

Many good explorations can be initiated with the use of

concrete materials. For example, “Try to find different
ways to make the number 437 using ones, tens, and hun-
dreds pieces. What patterns can you find? What else do
you notice about the ways you can make 437?" Here the
model is the focus of the problem, rather than a means of
exploring a different task.

Manipulatives and calculators should always be read-
ily available for student use as a regular part of your class-
rooim environment—a recommendation that is just as true
for middle school classrooms as for kindergarten.

Encouraging Discourse and Writing

To explain an idea orally or in written form forces us to
wrestle with that idea until it is really ours and we per-
sonally understand it. The more we try to explain some-
thing or argue reasonably about it, the more connections
we will search for and use in our explanation or in our
argument. Talking gets the talker involved.

When children are asked to respond to and critique
others, they are similarly forced to attend to and assimilate
what is being said into personal mental schemes.
Frequenily, when we get involved verbally with an idea,
we find ourselves changing or modifying the idea in mid-
stream. The reflective thought required to make an expla-
hation. or argue a point is a true learning experience in
itself (Corwin, 1996; Whitin & Wilde, 1995 Yackel,
Cobb, Wood, Wheatley, & Merkel, 1990).

Writing can be a part of nearly every problem posed.
It can include journals, formal essays, and reports. It is
also a useful tool for assessment of studems’ progress
(Marks-Krpan, 2001). Not only does writing help children
structure their thoughts, it obliges them to commit to an
idea and to rehearse an explanation or defence in prepara-
tion for a class discussion. Countryman {1992) states,
“The writer reflects on, returns to, and builds upon what
has gone before” (p. 59).

Requiring Justification of Student Responses

Requiring children to explain their ideas in detal or o
defend their responses has a positive effect on how they
view mathematics and their own mathematical abilities. It
communicates that mathernatics is not mysterious or
unfathomable, and that the teacher is not necessarily the
source of all mathematical truth. It also promotes confi-
dence and self-worth.

Having to justify responses forces students o think
reflectively. It also eliminates guessing or responses based
on rote learning. Thus, having children explain their
answers is another excellent mechanism for achieving the
same benefits as from discourse and writing,

Listening Actively

To promote reflective thinking requires teaching to be
child-centred, not teacher-centred. By focusing on chil-
dren’ thoughts instead of our own, we encourage children
to do more thinking and hence to search for and strength-
en more internal connections—in short, to develop under-
standing. When children respond to questions or make an
observation in class, an interested but nonevaluative
response from the teacher is a way to have them elaborate
their ideas or provide additional information: “Tell me
more about that, Karen” or “1 see. Why do you think that?”
Even a simple “Um-hmm” followed by silence is very
effective, as it permits the child and others to continue
their thinking,

Active listening requires that we believe in children’s
ideas. Waiting 45 seconds, a minute, or even longer for a
child to find a response or formulate even a simple idea is
much easier when we believe that whatever the child says
reflects a unique and valuable understanding. When you
believe in children, they sense it and respond accordingly.






